Geolam®: a stunning alternative to hardwood architectural trim

Geolam's line of architectural trim is the outcome of years of research. The result is an exclusive process of co-extrusion whereby an aluminum core section is fabricated with an outer covering, or skin, of composite wood. Geolam’s hybrid aluminum/WPC products provide the look of stained wood and provide long term performance with low maintenance.

These profiles exhibit the strength, stability, and versatility of aluminum with the warmth and aesthetic of natural wood. Light and easy to install, this hybrid aluminum/WPC material is used for facades, sunshades, screens and other architectural accents.
CUTTING THE PROFILES

• Use motorized tools and specialized aluminum-cutting chip saws when cutting Geolam hybrid profiles.
• Do not use grinders or chainsaws for cutting.
• Not using a suitable aluminum-cutting chip saw could result in deformation, cracks and/or peeling of the product.

Aluminium Saw Blade
Base Metal: Tool Steel
Chips: Carbide
Teeth: Minimum 2 teeth per centimeter

Cutting Speed
• Maximum 2 meters per minute

Cutting Direction
• To cut, pull the product in the same direction as the saw rotation, as shown in the illustration below.
• Cutting in the opposite direction may cause the product to move, which may produce an untidy cut in addition to being dangerous for the operator.
DRILLING HOLES IN PROFILES

- Use drills for use with metal or timber and make the holes with a tabletop drilling machine or a motorized screwdriver.
- Drilling holes through both sides of the material may result in the formation of burrs or chips when the drill exits the rear side.
- Therefore, test the machine on scrap material before starting work.
- If burrs do appear, drill through from both sides independently.
- Depending on how the burrs are formed, the surface layer could be chipped to reveal the aluminum core beneath.
INSTALLATION OPTIONS

Fastening profiles using InPull nut

Suggestions only. Customers to confirm appropriateness for their own specific uses

<table>
<thead>
<tr>
<th>Bolt Size</th>
<th>Prehole Diameter (mm)</th>
<th>Nut Width A (mm)</th>
<th>Max Torque (Nm)</th>
<th>Max Tension Load (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M6</td>
<td>10.2</td>
<td>9.5</td>
<td>10.0</td>
<td>7.8</td>
</tr>
<tr>
<td>M8</td>
<td>12.7</td>
<td>12.0</td>
<td>24.5</td>
<td>14.7</td>
</tr>
<tr>
<td>M10</td>
<td>15.7</td>
<td>14.3</td>
<td>39.2</td>
<td>19.6</td>
</tr>
<tr>
<td>M12</td>
<td>18.0</td>
<td>16.9</td>
<td>58.8</td>
<td>29.4</td>
</tr>
</tbody>
</table>

Pre-drill as shown (see above table for diameter). Select the correct InPull nut (M6 to M12) according to your fastening requirements.

Example of assembly brackets attached with bolts and anaerobic glue e.g. “thread locker”. The pre-drilled holes are wider than the bolt shaft (2 to 4 mm) to allow for expansion of the board. Washers are required as shown.

Installation of the supporting structure
Fastening profiles using blind nut

Pre-drill as shown.

Select the correct blind nut according to your fastening requirements.

Setting the blind nuts (manual or pneumatic tool).

Installation of the supporting structure. The pre-drilled holes are wider (2 to 4 mm) than the bolt shaft to allow for expansion of the board. Washers are required as shown.
INSTALLATION OPTIONS

Fastening profiles using self-tapping screw

For profiles with oversized aluminum wall, a direct fastening of the profile is possible (example: Soleo 6008 installed sideways).

Installation of the supporting structure. The pre-drilled holes are wider (2 to 4 mm) than the bolt shaft to allow for expansion of the board. Washers are required as shown.

Example of assembled brackets.
Fastening profiles using flange bolt

For specific profile only, use flange bolts allows a strong fixation (example: Soleo 6032 installed sideways).

According to the picture, drill a specific oblong hole using a numerically controlled milling machine.

Example of fixation on assembly brackets using braked nuts.
Bolt nuts, in-pull nuts and turn nuts

- Fix bolt-nuts, in-pull nuts, and turn-nuts firmly in place (recommended at 3.5Nm).
- Over-tightening may result in deformities, cracks and/or peeling appearing on the surface layer.
- Consult a local building code for joint span and bolt size requirement.
- Fixing the product in place with tapping screws or drill screws is not recommended.
- Nails must also not be used for fixing.
- Check the strength requirement prior to fixing to joint.
The end caps have to be glued to the profile. The end caps have four openings to allow for weeping of condensation – these must not be blocked or closed up. For a perfect aesthetic, wood composite end caps (WPC) can be adapted in size to the profile or showcased by an appropriate additional sanding by hand.

End caps must be glued to the WHS profile.

Use glue like Sikaflex®: Crystal Clear or 3M®: DP-8010:
- Designed to glue plastic (PP and PE) with Aluminum
- Moisture resistant
- Made for extreme temperature fluctuations (-30°C to +75°C)
- Transparent

Fix the end cap by following the 4 steps below

1. Ensure that the surfaces of the clip and the aluminum are clean. Apply one drop of quick-drying glue to each side of the end cap.

2. Insert the cap into the end of the WHS profile and verify that NO adhesive has come out on the sides. If so, clean quickly.

3. Press on the end cap with fingers and hold for about 5 seconds. Make sure that there is no gap between the WHS profile and the end cap.

4. The end cap is fixed.
SANDING THE PROFILES

- All profiles are delivered facing the same direction they were sanded in.
- Mount the profiles facing the same direction in order to keep an identical aspect across all profiles.
- Or, mount profiles facing different directions in order to achieve different shades caused by sun beams reflecting from different angles.
- Refer to the marks inside the profiles that indicate the direction of sanding.

POST INSTALLATION MAINTENANCE

- Clear away all cutting dust with an air blower, and make sure the dust does not get caught between products when they are stacked.
- Remove all post-processing burrs with sandpaper.
- Remove all soiling with a neutral detergent such as soap water.
- If a neutral detergent does not successfully remove the soiling, or when differences in luster caused by rubbing exist, use #24 to #40 sandpaper.
- Rub in a single direction (lengthwise) and finish it so that it looks the same as other surfaces.

THE LINEAR THERMAL EXPANSION COEFFICIENT

- The linear thermal expansion coefficient for Geolam profiles is the same as for aluminium: 2.3×10^{-5} mm $(20-100^\circ C)$.
- Geolam profile expansion (per meter) = expansion coefficient x temperature difference $(^\circ C)$ x product length (mm).
- Thus, for a temperature difference of $40^\circ C$ a Geolam profile expands by 0.92 mm per meter.

STORAGE

- Do not position the product in an upright position but store it indoors on a flat area.
- Cover the product with a protective sheet if it must be stored outdoors to prevent contact with water.
- However, the product must not be completely sealed-in when covered with a protective sheet.