

WOOD HYBRID PROFILES HANDLING BOOK **Geolam**

Architectural Eco-Technology

CONTENTS

- 5 DATA SHEETS
- 27 ACCESSORIES
- 30 GUIDANCE FOR INSTALLATION
- 42 MAINTENANCE OF WOOD HYBRID PROFILES
- 46 TESTS SUMMARY

Profiles and accessories summary

PROFILES	DIMENSIONS	WEIGHTS	END CAPS		CONNECTORS		PAGES
			ASA resin	WPC	Straight (180°)	Corner (90°)	
Soleo 1263	126 x 28 mm 5 x 1 ½ in	1.65 kg/lm 0.67 lb/ft	•		•		6
Soleo 6027	40 x 30 mm 1½ x 1¼ in	0.75 kg/lm 0.50 lb/ft	•				7
Soleo 6029	60 x 30 mm 2 ³ /8 x 1 ¹ /4 in	1.1 kg/lm 0.74 lb/ft	•	•			8
Soleo 6030	80 x 30 mm 3 ¹ / ₈ x 1 ¹ / ₄ in	1.25 kg/lm 0.84 lb/ft	•	•			9
Soleo 6008	52 x 32 mm 2 x 1½ in	0.8 kg/lm 0.55 lb/ft	•	•	•	•	10
Soleo 6012	103 x 32 mm 4 x 1¼ in	1.35 kg/lm 0.90 lb/ft	•				11
Soleo 6033	200 x 35 mm 8 x 1¾ in	3.3 kg/lm 2.21 lb/ft	•				12
Soleo 6026	60 x 40 mm 2 ³ / ₈ x 1 ¹ / ₂ in	1.1 kg/lm 0.74 lb/ft	•				13
Soleo 6017	93 x 43 mm 35/8 x 15/8 in	1.65 kg/lm 1.11 lb/ft	•				14
Soleo 6034	105 x 53 mm 4 ¹ / ₈ x 2 in	1.9 kg/lm 1.27 lb/ft	•		•		15
Soleo 6010	128 × 53 mm 5 × 2 in	2.45 kg/lm 1.64 lb/ft	•	•	•		16
Diameo 6018	120 x 30 mm 4 ³ /4 x 1 ¹ /4 in	1.9 kg/lm 1.27 lb/ft	•				17
Careo 6015	45 x 45 mm 1³/4 x 1³/4 in	0.88 kg/lm 0.59 lb/ft	٠				18
Careo 6011	52 x 52 mm 2 x 2 in	1.38 kg/lm 0.93 lb/ft	•				19
Careo 6014	88 x 88 mm 3½ x 3½ in	2.7 kg/lm 1.81 lb/ft	•	•			20
Careo 6035	87 x 87 mm 3 ¹ / ₂ x 3 ¹ / ₂ in	2.25 kg/lm 1.51 lb/ft	•	•			21
Careo 6016	120 x 120 mm 4 ³ /4 x 4 ³ /4 in	3.95 kg/lm 2.68 lb/ft	•				22
Rondo 6019	Diameter : 50 mm 2 in	1 kg/lm 0.67 lb/ft					23
Rondo 6020	Diameter : 63 mm 2½ in	2.51 kg/lm 1.70 lb/ft					24
Vertigo 5010	186 x 13 mm 7¼ x ½ in	1.29 kg/lm 0.87 lb/ft					25

5 | GEOLAM HANDLING BOOK

DATASHEET 5 - 26

Soleo 1263 WHS: Wood hybrid system

Datasheet

Thickness: 28 mm | 1¹/₈ in Width: 126 mm | 5 in Section tolerances in mm : + 0.5 / -1.5

Fire rating : On request before order

Surface finish : sanded

Accessories : see page 4

Standard length: 3.0 m | 9 ft 10 in On order any length from : 2.45 m | 8 ft to 5.8 m | 19 ft

Weight: 1.65 kg/lm | 1.11 lb/ft

Colors:

Teak

Rosewood

A6063S-T5

Secondary moment lx (cm⁴): 5.33

Secondary moment ly (cm4): 72.60

Section modulus Zx (cm³): 4.35

Section modulus Zy (cm³): 11.81

Core in anodized aluminum alloy :

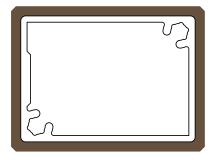
Coefficient of Thermal Expansion

Modulus of Elasticity: 68.6 GPa

Tensile Strength: 186 Mpa min

(20-100°C) : 23.4 µm/m/°C

Ebony / Wenge



Soleo 6027 WHS: Wood hybrid system

Thickness: $30 \text{ mm} \mid 1\frac{1}{4} \text{ in}$ Total width: $40 \text{ mm} \mid 1\frac{1}{2} \text{ in}$ Section tolerances in mm: +0.5/-1.5

Fire rating : On request before order

Accessories : see page 4

Accessories : end caps (plastic)

Standard length : 3.0 m | 9 ft 10 in **On order any length from :** 2.45 m | 8 ft to 5.8 m | 19 ft

Weight: 0.75 kg/lm | 0.50 lb/ft

Colors :

A6063S-T5

Secondary moment lx (cm4): 1.89

Secondary moment ly (cm⁴): 3.44

Section modulus Zx (cm³): 1.45

Section modulus Zy (cm³): 1.99

Core in anodized aluminum alloy :

Coefficient of Thermal Expansion

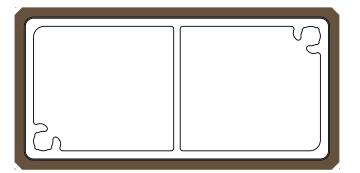
Modulus of Elasticity: 68.6 GPa

Tensile Strength: 186 Mpa min

Core cross section (mm²): 182.08

(20-100°C) : 23.4 µm/m/°C

Ebony / Wenge



Rosewood

L

Thickness: 30 mm | 1¹/₄ in Total width: 60 mm | 2³/₈ in Section tolerances in mm : + 0.5 / -1.5

Fire rating : On request before order

Surface finish : sanded

Accessories : see page 4

Standard length: 3.0 m | 9 ft 10 in On order any length from : 2.45 m | 8 ft to 5.8 m | 19 ft

Weight: 1.10 kg/lm | 0.74 lb/ft

Colors:

Teak

A6063S-T5

Ebony / Wenge

Secondary moment lx (cm4): 10.43

Secondary moment ly (cm⁴): 3.08

Section modulus Zx (cm³): 2.37

Section modulus Zy (cm³): 3.72

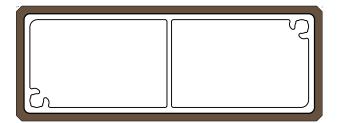
Core in anodized aluminum alloy :

Coefficient of Thermal Expansion

Modulus of Elasticity: 68.6 GPa

Tensile Strength: 186 Mpa min

Core cross section (mm²): 280.79


(20-100°C) : 23.4 µm/m/°C

Soleo 6030

WHS: Wood hybrid system

Thickness: 30 mm $| 1\frac{1}{4}$ in Total width: 80 mm $| 3\frac{1}{8}$ in Section tolerances in mm : +0.5/-1.5

Fire rating : On request before order

Surface finish : sanded

Accessories : see page 4

Standard length : 3.0 m | 9 ft 10 in **On order any length from :** 2.45 m | 8 ft to 5.8 m | 19 ft

Weight: 1.25 kg/lm | 0.84 lb/ft

Colors :

A6063S-T5

Secondary moment lx (cm⁴): 3.98

Secondary moment ly (cm⁴): 22.38

Section modulus Zx (cm³): 3.06

Section modulus Zy (cm³): 5.88

Core in anodized aluminum alloy :

Coefficient of Thermal Expansion

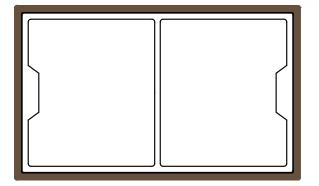
Modulus of Elasticity: 68.6 GPa

Tensile Strength : 186 Mpa min

Core cross section (mm²): 340.79

(20-100°C) : 23.4 µm/m/°C

Rosewood


ood

Soleo 6008 WHS: Wood hybrid sysem Datasheet

Thickness: 32 mm | 1¹/₈ in Width: 52 mm | 2 in Section tolerances in mm : + 0.5 / -1.5

Fire rating : On request before order

Surfaces finish : sanded or AC type

Accessories : see page 4

Standard length: 3.0 m | 9 ft 10 in On order any length from : 2.45 m | 8 ft to 5.8 m | 19 ft

Weight: 0.80 kg/lm | 0.54 lb/ft

Colors:

Rosewood

A6063S-T5

Secondary moment lx (cm4): 2.54

Secondary moment ly (cm⁴): 6.98

Section modulus Zx (cm³): 1.77

Section modulus Zy (cm³): 2.87

Core in anodized aluminum alloy :

Coefficient of Thermal Expansion

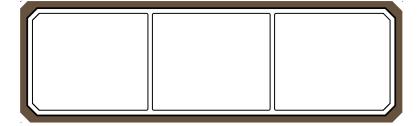
Modulus of Elasticity: 68.6 GPa

Tensile Strength: 186 Mpa min

Core cross section (mm²): 233.67

(20-100°C) : 23.4 µm/m/°C

Ebony / Wenge



Teak

WHS: Wood hybrid sysem Datasheet

Thickness: 32 mm | 1¹/₄ in Width: 103 mm | 4 in Section tolerances in mm : +0.5/-1.5

Fire rating : On request before order

Surfaces finish : sanded or AC type

Accessories : see page 4

Standard length: 3.0 m | 9 ft 10 in On order any length from : 2.45 m | 8 ft to 5.8 m | 19 ft

Weight: 1.35 kg/lm | 0.90 lb/ft

Colors:

A6063S-T5

Secondary moment lx (cm⁴): 5.38

Secondary moment ly (cm4): 36.81

Section modulus Zx (cm³): 3.76

Section modulus Zy (cm³): 7.47

Core in anodized aluminum alloy :

Coefficient of Thermal Expansion

Modulus of Elasticity: 68.6 GPa

Tensile Strength: 186 Mpa min

Core cross section (mm²): 379.90

(20-100°C) : 23.4 µm/m/°C

Ebony / Wenge

deco-ribbed surface

Thickness: 35 mm | 1³/₈ in Total width: 200 mm | 8 in Section tolerances in mm:+0.5/-1.5

Fire rating : M1 ou M2 :on demand

Surface finish : sanded, grooved or deco-ribbed

Accessories : see page 4

Standard length : 3.0 m | 9 ft 10 in On order any length from : 2.45 m | 8 ft to 5.8 m | 19 ft

Weight: 3.3 kg/lm | 2.21 lb/ft

Colors :

Secondary moment lx (cm⁴): 13.39

Secondary moment ly (cm4): 309.48

Section modulus Zx (cm³): 8.92

Section modulus Zy (cm³): 31.74

Core in anodized aluminum alloy :

Coefficient of Thermal Expansion

Modulus of Elasticity: 68.6 GPa

Tensile Strength: 186 Mpa min

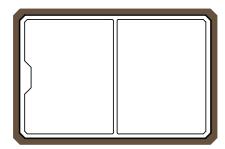
Core cross section (mm²): 858.79

(20-100°C) : 23.4 µm/m/°C

A6063S-T5

Ebony / Wenge

Teak


Rosewood

Soleo 6026 WHS: Wood hybrid system

Datasheet

Thickness: 40 mm $| 1\frac{1}{2}$ in Width: 60 mm $| 2\frac{3}{8}$ in Section tolerances in mm: +0.5/-1.5

Fire rating : On request before order

Surface finish : sanded

Accessories : see page 4

Standard length : 3.0 m | 9 ft 10 in **On order any length from :** 2.45 m | 8 ft to 5.8 m | 19 ft

Weight: 1.10 kg/lm | 0.74 lb/ft

Colors :

A6063S-T5

Secondary moment lx (cm4): 5.21

Secondary moment ly (cm⁴): 11.18

Section modulus Zx (cm³): 2.91

Section modulus Zy (cm³): 4.20

Core in anodized aluminum alloy :

Coefficient of Thermal Expansion

Modulus of Elasticity: 68.6 GPa

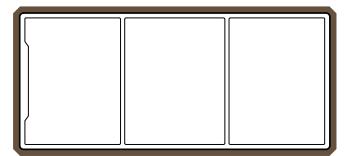
Tensile Strength: 186 Mpa min

Core cross section (mm²): 276.82

(20-100°C): 23.4 µm/m/°C

Ebony / Wenge

Rosewood


bod

Soleo 6017 WHS: Wood hybrid system

Datasheet

Thickness: 43 mm | 15/8 in Width: 93 mm | 35/8 in Section tolerances in mm : + 0.5 / -1.5

Fire rating : On request before order

Surface finish : sanded

Accessories : see page 4

Standard length: 3.0 m | 9 ft 10 in On order any length from : 2.45 m | 8 ft to 5.8 m | 19 ft

Weight: 1.65 kg/lm | 1.11 lb/ft

Colors:

Teak

A6063S-T5

Secondary moment lx (cm4): 10.37

Secondary moment ly (cm⁴): 40.34

Section modulus Zx (cm³): 5.32

Section modulus Zy (cm³): 9.50

Core in anodized aluminum alloy :

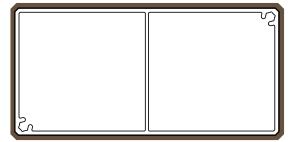
Coefficient of Thermal Expansion

Modulus of Elasticity: 68.6 GPa

Tensile Strength : 186 Mpa min

Core cross section (mm²): 441.57

(20-100°C): 23.4 µm/m/°C


Rosewood

Ebony / Wenge

Thickness: 53 mm | 2 in Total width: 105 mm | 4¹/₈ in Section tolerances in mm: +0.5/-1.5

Fire rating : On request before order

Surface finish : sanded

Accessories : see page 4

Standard length: 3.0 m | 9 ft 10 in On order any length from: 2.45 m | 8 ft to 5.8 m | 19 ft

Weight: 1.9 kg/lm | 1.27 lb/ft

Colors :

A6063S-T5

Secondary moment lx (cm4): 20.57

Secondary moment ly (cm⁴): 62.44

Section modulus Zx (cm³): 8.48

Section modulus Zy (cm³): 12.36

Core in anodized aluminum alloy :

Coefficient of Thermal Expansion

Modulus of Elasticity: 68.6 GPa

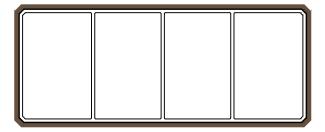
Tensile Strength: 186 Mpa min

Core cross section (mm²): 508.20

(20-100°C): 23.4 µm/m/°C

Ebony / Wenge

Rosewood


a

Soleo 6010 WHS: Wood hybrid system

Datasheet

Thickness: 53 mm | 2 in Width: 128 mm | 5 in Section tolerances in mm: +0.5/-1.5

Fire rating : On request before order

Surface finish : sanded

Accessories : see page 4

Standard length : 3.0 m | 9 ft 10 in **On order any length from :** 2.45 m | 8 ft to 5.8 m | 19 ft

Weight: 2.45 kg/lm | 1.64 lb/ft

Colors:

Rosewood

A6063S-T5

Ebony / Wenge

Teak

Secondary moment lx (cm4): 24.61

Secondary moment ly (cm4): 101.53

Section modulus Zx (cm³): 10.13

Section modulus Zy (cm³): 16.43

Core in anodized aluminum alloy :

Coefficient of Thermal Expansion

Modulus of Elasticity: 68.6 GPa

Tensile Strength: 186 Mpa min

Core cross section (mm²): 662.10

(20-100°C) : 23.4 µm/m/°C

Thickness : 30 mm | 1¹/₄ in Width: 120 mm | 4³/₄ in Section tolerances in mm : + 0.5 / -1.5

Fire rating : On request before order

Surface finish : sanded

Accessories : see page 4

Standard length: 3.0 m | 9 ft 10 in On order any length from : 2.45 m | 8 ft to 5.8 m | 19 ft

Weight: 1.90 kg/lm | 1.27 lb/ft

Colors:

A6063S-T5

Secondary moment lx (cm⁴): 4.83

Secondary moment ly (cm4): 42.75

Section modulus Zx (cm³): 3.72

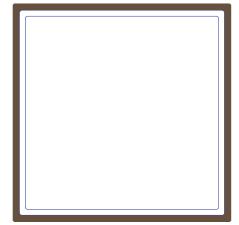
Section modulus Zy (cm³):7.67

Core in anodized aluminum alloy :

Coefficient of Thermal Expansion

Modulus of Elasticity: 68.6 GPa Tensile Strength: 186 Mpa min

(20-100°C) : 23.4 µm/m/°C


Teak

Ebony / Wenge

Careo 6015 WHS: Wood hybrid system

Datasheet

Thickness : 45 mm | 1³/4 in **Width :** 45 mm | 1³/4 in Section tolerances in mm : + 0.5 /-1.5

Fire rating : On request before order

Surface finish : sanded

Accessories : see page 4

Standard length: 3.0 m | 9 ft 10 in On order any length from: 2.45 m | 8 ft to 5.8 m | 19 ft

Weight: 0.88 kg/lm | 0.59 lb/ft

Colors :

A6063S-T5

Secondary moment lx (cm⁴): 5.52

Secondary moment ly (cm⁴): 5.52

Section modulus Zx (cm³): 2.61

Section modulus Zy (cm³): 2.61

Core in anodized aluminum alloy :

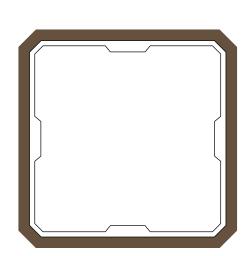
Coefficient of Thermal Expansion

Modulus of Elasticity: 68.6 GPa

Tensile Strength: 186 Mpa min

(20-100°C): 23.4 µm/m/°C

Ebony / Wenge


Geolam

Teak

Careo 6011 WHS: Wood hybrid system

Thickness: 53 mm | 2 in Width: 53 mm | 2 in Section tolerances in mm:+0.5/-1.5

Fire rating : On request before order

Surface finish : sanded

Accessories : see page 4

Standard length : 3.0 m | 9 ft 10 in On order any length from : 2.45 m | 8 ft to 5.8 m | 19 ft

Weight: 1.38 kg/lm | 0.93 lb/ft

Colors :

A6063S-T5

Secondary moment lx (cm⁴): 11.48

Secondary moment ly (cm4): 11.48

Section modulus Zx (cm³): 4.72

Section modulus Zy (cm³): 4.72

Core in anodized aluminum alloy :

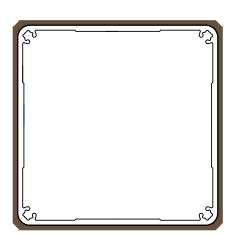
Coefficient of Thermal Expansion

Modulus of Elasticity: 68.6 GPa

Tensile Strength: 186 Mpa min

(20-100°C) : 23.4 µm/m/°C

Ebony / Wenge


Teak

Rosewood

Careo 6014 WHS: Wood hybrid system

Thickness: 88 mm | 3¹/₂ in Width: 88 mm | 3¹/₂ in Section tolerances in mm : +0.5 / -1.5

Fire rating : On request before order

Surfaces finish : sanded or AC type

Accessories : see page 4

Standard length: 3.0 m | 9 ft 10 in On order any length from : 2.45 m | 8 ft to 5.8 m | 19 ft

Weight: 2.70 kg/lm | 1.81 lb/ft

Colors:

Teak

A6063S-T5

Secondary moment lx (cm4): 81.74

Secondary moment ly (cm4): 81.74

Section modulus Zx (cm³): 19.55

Section modulus Zy (cm³): 19.55

Core in anodized aluminum alloy :

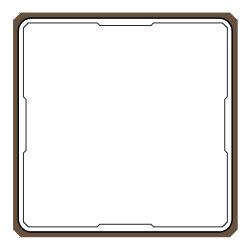
Coefficient of Thermal Expansion

Modulus of Elasticity: 68.6 GPa

Tensile Strength: 186 Mpa min

Core cross section (mm²): 751.48

(20-100°C) : 23.4 µm/m/°C


Rosewood

Ebony / Wenge

Careo 6035 WHS: Wood hybrid system

Thickness: 87 mm | 3¹/₂ in Width: 87 mm | 3¹/₂ in Section tolerances in mm : +0.5 / -1.5

Fire rating : On request before order

Surfaces finish : sanded or AC type

Accessories : see page 4

Standard length: 3.0 m | 9 ft 10 in On order any length from : 2.45 m | 8 ft to 5.8 m | 19 ft

Weight: 2.25 kg/lm | 1.51 lb/ft

Colors:

Teak

Rosewood

Limba

A6063S-T5

Secondary moment lx (cm⁴): 64.18

Secondary moment ly (cm⁴): 64.18

Section modulus Zx (cm³): 15.35

Section modulus Zy (cm³): 15.35

Core in anodized aluminum alloy :

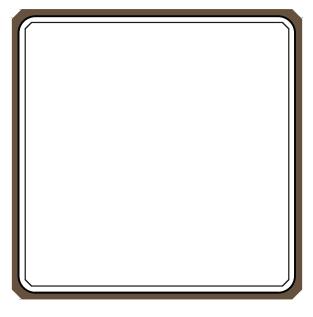
Coefficient of Thermal Expansion

Modulus of Elasticity: 68.6 GPa

Tensile Strength : 186 Mpa min

Core cross section (mm²): 598.13

(20-100°C) : 23.4 µm/m/°C



Careo 6016 WHS: Wood hybrid system

Datasheet

Thickness : 120 mm | 4³/₄ in **Width :** 120 mm | 4³/₄ in Section tolerances in mm : +0.5 / -1.5

Fire rating : On request before order

Surfaces finish : sanded

Accessories : see page 4

Standard length : 3.0 m | 9 ft 10 in **On order any length from :** 2.45 m | 8 ft to 5.8 m | 19 ft

Weight: 4 kg/lm | 2.68 lb/ft

Colors :

Secondary moment lx (cm⁴):

Secondary moment ly (cm⁴):

Section modulus Zx (cm³):

Section modulus Zy (cm³):

(20-100°C): 23.4 µm/m/°C

Core cross section (mm²):

A6063S-T5

Core in anodized aluminum alloy :

Coefficient of Thermal Expansion

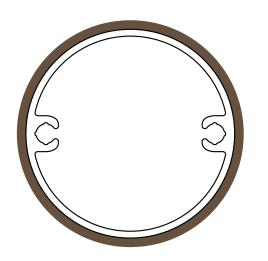
Modulus of Elasticity: 68.6 GPa

Tensile Strength: 186 Mpa min

Ebony / Wenge

Teak

Rosewood


boow

Rondo 6019 WHS: Wood hybrid system

Datasheet

Diameter : 50 mm | 2 in Section tolerances in mm : + 0.5 /-1.5

Fire rating :

On request before order

Surface finish : sanded

Accessories : see page 4

Standard length: 3.0 m | 9 ft 10 in On order any length from: 2.45 m | 8 ft to 5.8 m | 19 ft

Weight: 1 kg/lm | 0.67 lb/ft

Secondary moment lx (cm⁴):7

Colors :

Secondary moment ly (cm4): 5.23

Section modulus Zx (cm³): 2.27

Section modulus Zy (cm³): 3.04

A6063S-T5

Core in anodized aluminum alloy :

Coefficient of Thermal Expansion (20-100°C): 23.4 µm/m/°C

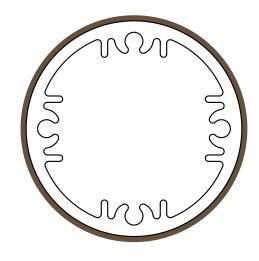
Modulus of Elasticity: 68.6 GPa

Tensile Strength: 186 Mpa min

Core cross section (mm²): 259.597

Ebony / Wenge

Teak



Rondo 6020 WHS: Wood hybrid system

Datasheet

Diameter : 63 mm | 2¹/₂ in Section tolerances in mm : +0.5 / -1.5

Fire rating :

On request before order

Surface finish : sanded

Accessories : see page 4

Standard length: 3.0 m | 9 ft 10 in On order any length from: 2.45 m | 8 ft to 5.8 m | 19 ft

Weight: 2.51 kg/lm | 1.70 lb/ft

Secondary moment lx (cm⁴): 29.6

Colors :

Secondary moment ly (cm4): 29.6

Section modulus Zx (cm³): 9.9

Section modulus Zy (cm³): 9.9

A6063S-T5

Core in anodized aluminum alloy :

Coefficient of Thermal Expansion

Modulus of Elasticity: 68.6 GPa

Tensile Strength: 186 Mpa min

Core cross section (mm²): 259.597

(20-100°C) : 23.4 µm/m/°C

Teak

1

Thickness : 13 mm | ¹/₂ in **Total width :** 186 mm | 7¹/₄ in **Usable width :** 170 mm | 6¹/₂ in Section tolerances in mm : + 0.5 / -1.5

Fire rating : On request before order

Surfaces finish : sanded

Accessories : see page 4

Standard length: 3.0 m | 9ft 10 in On order any length from: 2.45 m | 8ft to 5.8 m | 19ft

Weight: 1.29 kg/lm | 0.87 lb/ft

Colors :

A6063S-T5

Secondary moment lx (cm⁴): 0.56

Secondary moment ly (cm⁴): 121.55

Section modulus Zx (cm³): 0.68

Section modulus Zy (cm³): 12.81

Core in anodized aluminum alloy :

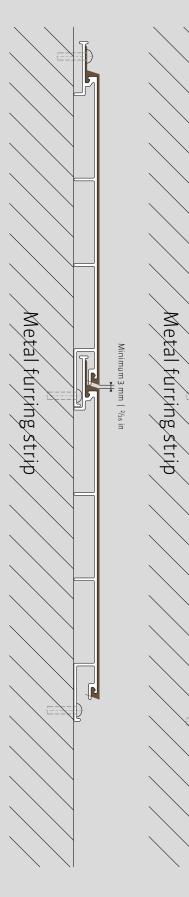
Coefficient of Thermal Expansion

Modulus of Elasticity: 68.6 GPa

Tensile Strength: 186 Mpa min

Core cross section (mm²): 371.95

(20-100°C): 23.4 µm/m/°C



Ebony / Wenge

Geolam

Architectural Eco-Technology

Maximum 6mm

1/4 IN

- Weeping of condensation and air circulation are essential to the health of building products. Please ensure at least 6 mm (¹/₄") thickness of furring strips and do not seal the bottom or top of the wall.
 The boards will expand in warmer weather and contract in cooler weather. For horizontal installation create a fixed point near the middle of the board e.g. A 4 mm hole with a 4 mm screw diameter.
- 2. Geolam boards are to be mounted horizontally, vertically, or diagonally on furring strips or gets spaced no more than 24 inches on center. Metal furring strips are best but other stable, non-deteriorating materials may be used. For horizontal mounting start at the top and work down.
- 3. Boards may be ripped (cut along their length) as needed
- 4. Recommended screws are stainless steel, with an austenitic structure and non-magnetic. Recommended screw diameter is 4 mm, pan head with a diameter of 8.2 mm and length of 19 mm
- 5. The boards will expand in warmer weather and contract in cooler weather. For horizontal installation create a fixed point near the middle of the board e.g. A 4 mm hole with a 4 mm screw diameter. Moving out from this mid-point, the boards need to be pre-drilled with a 7 mm hole and the screws loosely fastened in the middle of these holes so that the board can expand and contract under the screw heads. Failure to do this may result in buckling of the boards.
- **6.** The boards may be miter-cut for outside corners.
- Exposed screws on the final board may be covered with caulking if desired or covered with any powder-coated metal piece.

WPC and ASA end caps

WPC end caps

ASA end caps

The end caps have to be glued to the profile (see page 29) .

The end caps have four openings to allow for weeping of condensation – these must not be blocked.

For a perfect aesthetic, wood composite end caps (WPC) can be adapted in size to the profile or showcased by an appropriate sanding.

Corner connector

Corner connectors for Soleo 6008

Straight connector

Straight connectors for Soleo 6008, 1263, 6010 & 6034

End caps installation

End caps must be glued to the WHS profile. Use instant glue :

- Made for plastic (PP and PE8) and aluminium A6063S-T5
- Moisture resistant
- Made for extreme temperature fluctuations (-30°C to + 75°C)
- Transparent

Fix the end cap by following the 4 steps below

Ensure that the surfaces of the clip and the aluminum are clean. Apply one drop of quick-drying glue to each side of the end cap.

Insert the cap into the end of the WHS profile and verify that NO adhesive has come out on the sides. If so, clean quickly.

3.

Press on the end cap with fingers and hold for about 5 seconds. Make sure that there is no gap between the WHS profile and the end cap.

The end cap is fixed.

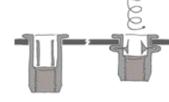
GUIDANCE FOR INSTALLATION 30 - 41

Installing profiles

1. Blind rivet nut

Drill a hole in the desired location of the profile, the size is the dimension of the outer diameter of the screw nut, plus the specified tolerance.

Check the diameter of the aperture, the blind nut should fit snugly.



Screw the blind nut on the tool, enter and implement the tool in order to secure the nut to the profile.

The nut is in place, the profile can be screwed to a support or to another section.

A blind rivet nut before and after the establishment. The region without the thread is getting tightened during the installation and forms the counter-holder. This allows a concealed installation and the preparation of the profiles at the factory. This will reduce the time spent on the construction site.

Example of finalized assembly.

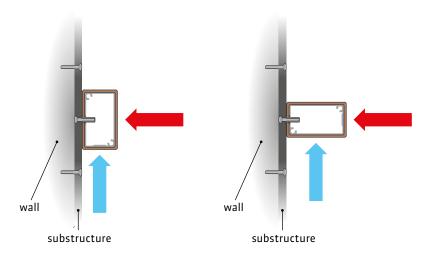
2. By screwing

Thanks to the aluminium core, the profiles have sufficient allowance so they may also be directly screwed.

Example of finalized assembly.

Recommended span between two fixation points for the installation of Geolam hybrid profile

A minimum 3 of fixation points is required for each profile.

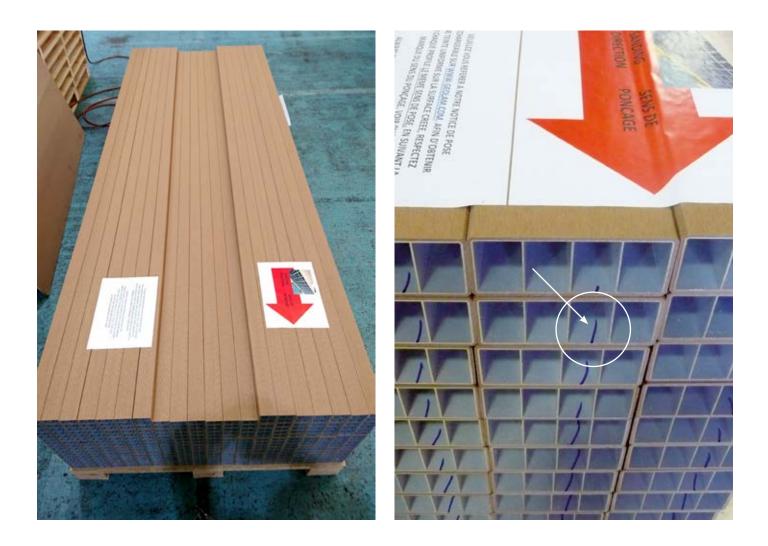

The values provided on following pages are based on very severe norms set in Japan:

- wind velocity: 34 m/sec
- wind pressure : 4256 N/m²
- allowed deflection for span : $\frac{1}{300}$
- allowed deflection for cantilever : ¹/₃₀₀₀

Therefore these data are indicative values only.

Based on the type of applications, local regulations or building code, the company in charge of the installation shall determine and be solely responsible to set-up the appropriate distances for span and cantilever.

DYNAMIC WIND PRESSURE DIRECTION :



Profile name	Laying Direction	Dynamic wind pressure direction	Max (cm In)	Max (cm In)	Max (cm ln)	Max (cm In)
Soleo 1263			50 20	300 118	300 118	50 20
	Vertical		25 10	110 44	110 44	25 10
126 x 28			40 16	200 79	200 79	40 16
	Horizontal		25 10	100 40	100 40	25 10
			30 12	150 59	150 59	30 12
Soleo 6027	Vertical		25 10	120 47	120 47	25 10
40 x 30			30 12	150 59	150 59	30 12
	Horizontal		25 10	100 40	100 40	25 10
			40 16	220 87	220 87	40 16
Soleo 6029	Vertical		25 10	120 47	120 47	25 10
60 x 30			40 16	210 83	210 83	40 16
	Horizontal	\rightarrow	25 10	100 40	100 40	25 10
Soleo 6030 80 x 30			50 20	280 110	280 110	50 20
	Vertical		25 10	120 47	120 47	25 10
			40 16	210 83	210 83	40 16
	Horizontal	\rightarrow	25 10	100 40	100 40	25 10
Soleo 6008 52 x 32			30 12	200 79	200 79	30 12
	Vertical		25 10	120 47	120 47	25 10
			30 12	200 79	200 79	30 12
	Horizontal		25 10	100 40	100 40	25 10

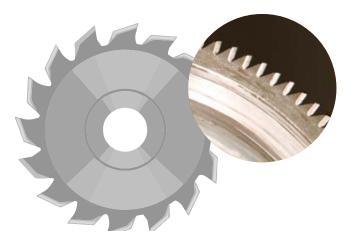
Profile name	Laying Direction	Dynamic wind pressure direction	Max (cm In)	Max (cm In)	Max (cm ln)	Max (cm In)
Soleo 6012 103 x 32			50 20	300 118	300 118	50 20
	Vertical		25 10	120 47	120 47	25 10
			40 16	200 79	200 79	40 16
	Horizontal		25 10	100 40	100 40	25 10
			50 20	300 118	300 118	50 20
Soleo 6033	Vertical		30 12	120 47	120 47	30 12
200 x 35			40 16	200 79	200 79	40 16
	Horizontal		30 12	120 47	120 47	30 12
		\rightarrow	40 16	210 83	210 83	40 16
Soleo 6026	Vertical		30 12	150 59	150 59	30 12
60 x 40			40 16	210 83	210 83	40 16
	Horizontal		30 12	120 47	120 47	30 12
			50 20	300 118	300 118	50 20
Soleo 6017	Vertical		30 12	150 59	150 59	30 12
93 x 43			50 20	250 99	250 99	50 20
	Horizontal		30 12	150 59	150 59	30 12
			50 20	300 118	300 118	50 20
5oleo 6034	Vertical		40 16	180 71	180 71	40 16
105 x 53			50 20	280 110	280 110	50 20
	Horizontal		40 16	180 71	180 71	40 16
			50 20	300 118	300 118	50 20
5oleo 6010	Vertical		40 16	180 71	180 71	40 16
128 x 53			50 20	280 110	280 110	50 20
	Horizontal		40 16	180 71	180 71	40 16
			40 16	200 79	200 79	40 16
Diameo 6018	Vertical		30 12	180 71	180 71	30 12
120 x 30			40 16	200 79	200 79	40 16
	Horizontal		30 12	180 71	180 71	30 12
			40 16	190 75	190 75	40 16
Careo 6011	Vertical		40 16	190 75	190 75	40 16
53 x 53			40 16	190 75	190 75	40 16
	Horizontal	—	40 16	190 75	190 75	40 16

						_
Profile name	Laying Direction	Dynamic wind pressure direction	Max (cm In)	Max (cm In)	Max (cm ln)	Max (cm In)
Careo 6014 88 x 88			50 20	300 118	300 118	50 20
	Vertical		50 20	300 118	300 118	50 20
			50 20	300 118	300 118	50 20
	Horizontal		50 20	300 118	300 118	50 20
Rondo 6019 diam. 50		\rightarrow	40 16	160 63	160 63	40 16
	Vertical		40 16	160 63	160 63	40 16
			40 16	160 63	160 63	40 16
	Horizontal		40 16	160 63	160 63	40 16
Vertigo 5010 186 x 13						
	Vertical		15 6	50 20	50 20	15 6
	Horizontal		15 6	50 20	50 20	15 6

Geolam boards are sanded in a particular direction, giving them an 'up' and 'down' orientation. Each board is marked inside to show its orientation (see picture). The boards need to be installed consistently in order to ensure a uniform appearance.

HANDLING MANUAL 36-41

Processing Methods

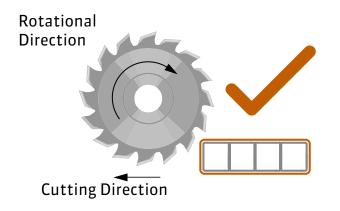

- The same tools as for other Geolam profiles can be used to cut, drill and bend Geolam Soleo profiles.
- Carry out all work on surfaces that are flat without any bumps.
- Make sure that both sides of the profile are firmly supported to prevent it from falling when working on it.
- Do not use water or oil.
- Make sure the blade does not exceed 60 degrees Celsius.

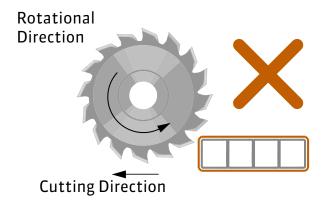
1. Cutting

- Use motorized tools and specialized aluminum-cutting chip saws when cutting Geolam Soleo Profiles.
- Do not use grinders or chainsaws for cutting.
- Not using a suitable aluminum-cutting chip saw could result in deformation, cracks and/or peeling of the product.

Aluminium Cutting Chip Saw

Base Metal: Tool Steel Chips: Carbide Teeth: Maximum 2 teeth per centimeter




Cutting Speed : maximum 2 meters per minute.

Examples of Tools and Equipment

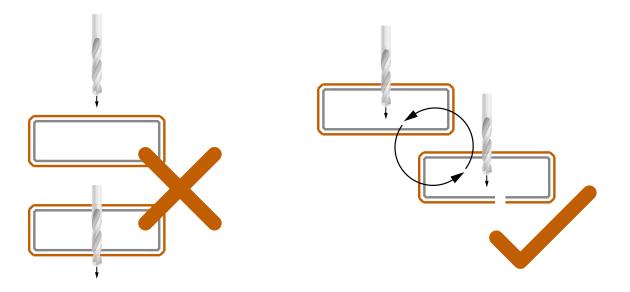
Cutting Direction

- To cut, pull the product in the same direction as the saw rotation, as shown in the illustration below.
- Cutting in the opposite direction may cause the product to move, which may produce an untidy cut in addition to being dangerous for the operator.

2. Hole-drilling

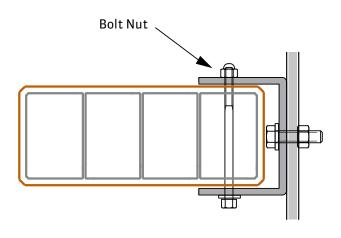
Examples of Tools and Equipment

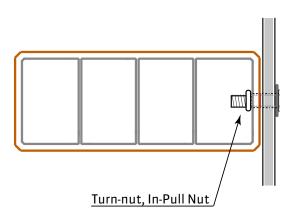
Tabletop Drilling Machine



- Use drills for use with metal or timber and make the holes with a tabletop drilling machine or a motorized screwdriver.
- Drilling holes through both sides of the material may result in the formation of burrs or chips when the drill exits the rear side.
- Therefore, test the machine on scrap material before starting work.

Motorized Screwdriver


- If burrs do appear, drill through from both sides independently.
- Depending on how the burrs are formed, the surface layer could be chipped to reveal the aluminum core beneath.



3 Stoppers

- Fix bolt-nuts, in-pull nuts, and turn-nuts firmly in place (recommended at 3.5Nm).
- Over-tightening may result in deformities, cracks and/or peeling appearing on the surface layer.
- Consult a local building code for joint span and bolt size requirement.
- Fixing the product in place with tapping screws or drill screws is not recommended.
- Nails must also not be used for fixing.
- Check the strength requirement prior to fixing to joint.

Work Examples

4 Sanding

- All profiles are delivered facing the same direction they were sanded in.
- Mount the profiles facing the same direction in order to keep an identical aspect across all profiles.

5 Post-Processing Maintenance

- Clear away all cutting dust with an air blower, and make sure the dust does not get caught between products when they are stacked.
- Remove all post-processing burrs with sandpaper.
- Remove all soiling with a neutral detergent such as soap water.

- Or, mount profiles facing different directions in order to achieve different shades caused by sun beams reflecting from different angles.
- Refer to the marks inside the profiles that indicate the direction of sanding.
- If a neutral detergent does not successfully remove the soiling, or when differences in luster caused by rubbing exist, use Nr. 24 to Nr. 40 sandpaper.
- Rub in a single direction (lengthwise) and finish it so that it looks the same as other surfaces.

6 Miscellaneous

The linear thermal expansion coefficient

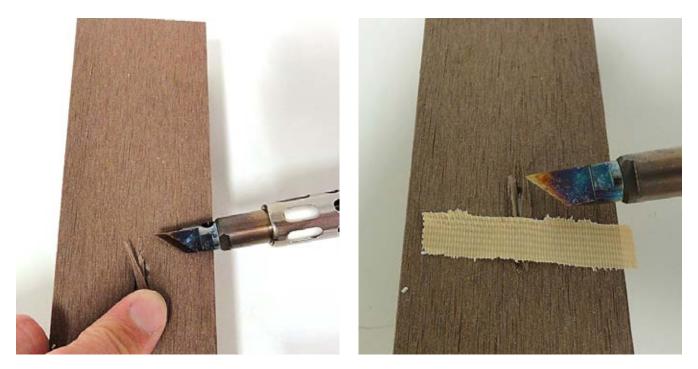
- The linear thermal expansion coefficient for Geolam Soleo profiles is the same as for aluminium: 2.3 x 10-5 mm (20-100°C).
- Geolam Soleo profile expansion (per meter) = exoansion coefficient x temperature difference (°C) x product length (mm).
- Thus, for a temperature difference of 40°C a Soleo profile expands by 0.92 mm per meter.

Storage

- Do not position the product in an upright position but store it indoors on a flat area.
- Cover the product with a protective sheet if it must be stored outdoors to prevent contact with water.
- However, the product must not be completely sealedin when covered with a protective sheet.

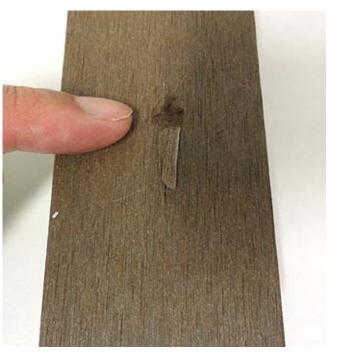
MAINTENANCE OF WOOD HYBRID PROFILES 42 - 45

How to repair a surface scratch


Step 1/5

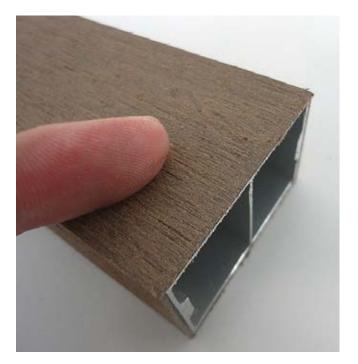
Collect some composite material on a profile, warm up the soldering iron.


Step 2/5


Put the composite wood on the scratch. Hold it with your finger or use an adhesive tape.

Step 3/5

Spread the composite wood on the scratch using a soldering iron, the wood fiber sticks.


Step 4/5

Aspect before sanding.

Step 5/5

Use a 40 or 60 grit sandpaper for sanding.

TESTS SUMMARY 46 - 51

- SUSTAINABILITY | 47
 - TREATEMENT 49
- AESTHETIC & WELLNESS 50
- HEALTH SAFETY ENVIRONMENT 50

Sustainability

ANNEX 1 : Humidity absorption of the cross sections

	Object	Ink application on the surface of the product, on the cross sections.
Outcome After a week in an ink bath, there is no trace of any ink penetration between t	Execution date	02.11.2012
trace of any ink penetration between t	Product	Soleo, Careo, Vertigo, Diameo
composite wood layer and the alumnu	Outcome	After a week in an ink bath, there is no trace of any ink penetration between the composite wood layer and the aluminum.

The product can be worked like an aluminum profile without taking any particular precaution.

ANNEX 2 : Delamination resistance in tropical conditions (humidity and temperature variation)

Object	Delamination resistance of the composite wood layer after exposure to a temperature of 70 Celsius degrees and a humidity rate of 95% during 30 days.
Execution date	22.02.2013
Product	Soleo, Careo, Vertigo, Diameo
Outcome	No delamination or fissure occurred. The adhesion of the composite wood layer on the aluminum is perfect

The product can be used in tropical climates conditions without any particular precaution.

ANNEX 3 : Aging due to sun rays exposure

Object	Accelerated aging test through the Sunshine Weather-ometer® procedure
Execution date	17.12.2012
Product	Soleo, Careo, Vertigo, Diameo
Outcome	A delta E of 2.61 after 1000 hours and of 2.53 after 5000 hours for a wood aluminum hybrid profile in the rosewood color. Color variation is tiny.

Profile's color remains perfectly constant in the time.

ANNEX 4 : Aging due to UV light, humidity and temperature variations exposure

Object	UV light resistance test with alternating humidity rates (water projection) and extreme temperatures (from 80 to -50 Celsius degrees).
Execution date	28.03.2013
Product	Soleo, Careo, Vertigo, Diameo
Outcome	No delamination or fissure occurred. The adhesion of the composite wood layer on the aluminum is perfect. Color stays stable.

The product can be used in any kind of climate, even harshest ones (extreme temperatures, high humidity, very strong sunning).

ANNEX 5 : Resistance of bended profiles to humidity

Object	Resistance of a bended profile to humid atmospheres which contains sulfur dioxide through the DIN EN ISO 3231 standard
Date d'obtention	02.07.2013
Organisme	Institut für Oberflächentechnik GmbH, Germany
Product	Bended Soleo. Radius 500 mm
Outcome	No perceptible change after 24 cycles.

Bended profiles can perfectly be used in humid climates.

ANNEX 6 : Color stability

Object	Samples of different colors are exposed to UV light through the JIS K5400(K5600) standard.
Execution date	15.01.2013
Product	Soleo, Careo, Vertigo, Diameo
Outcome	Depending on the color and the number of hours, the delta E vary from 0,9 to 10,6.

Profile's color remains perfectly constant in the time. Dark colors are even more stable than light colors.

ANNEX 7 : Resistance of bended profiles to bad weather

Object	Color and shine change due to meteo and solar radiations exposure through the DIN EN ISO 11341 standard.
Date d'obtention	02.07.2013
Organisme	Institut für Oberflächentechnik GmbH, Germany
Product	Bended Soleo. Radius 500 mm
Outcome	No color or shine variation after 1 000 hours of test. Color before the test: $\Delta E = 39,7$ and after the test : $\Delta E = 37,8$. Shine before the test: G = 1,35 and after the test : G = 1,40.

Profile's color remains perfectly constant in the time. Bended profiles can perfectly be used in high sunlight regions.

ANNEX 8 : Termites resistance

Object	Termites resistance through the JIS-K-1571-2010 standard.
Execution date	17.12.2012
Product	Soleo, Careo, Vertigo, Diameo
Outcome	Little 0.5% loss of weight against 36% For Japanese cedar; Termites death rate of at least 47.6% against 23.5% for Japanese cedar.

The product shows an excellent resistance to termites.

ANNEX 9 : Rot resistance

Object	Rot resistance through the JIS-K-1571-2010 standard.
Execution date	17.12.2012
Product	Soleo, Careo, Vertigo, Diameo
Outcome	After 12 weeks of Fomitopsis Palustris infection, minimal 0.5% weight loss against 27.6% for Japanese cedar. After 12 weeks of Trametes Versicolor infection, no weight loss against 33.4% for Japanese cedar.

The product is perfectly rot-proof.

ANNEX 10 : Brinell hardness & wear

Object	Measure of the puncture resistance (high hill shoe) and measure of the loss of weight caused by the wear due to pedestrian traffic.
Execution date	10.03.2013
Product	Soleo, Careo, Vertigo, Diameo
Outcome	The Soleo profile do have a higher hardness than the teak and the weight loss due to wear is lower than the one of a composite wood product of the second generation, as commonly used for terraces.

The product is extremely wear resistant.

ANNEX 11 : Delamination resistance

Object	Resistance to the detachment of the composite wood layer from the aluminum one, following an incision through the JIS-K-5600-5-6 standard.
Execution date	13.02.2013
Product	Soleo, Careo, Vertigo, Diameo
Outcome	No delamination on the incised parts. Presence of little scales at the intersection of the incisions.

The composite wood layer is perfectly joint

to the aluminum.

Treatment

ANNEX 12: Treatment and tags cleaning

Object	Possibility to eliminate tags with a solvent- made or preventive solution in order to enable a water cleaning without damaging the surface of the product.
Execution date	14.03.2014
Product	Soleo, Careo, Vertigo, Diameo
Outcome	The GraffiGuardR 2030 enable the elimination of the tag without causing any chemical damage to the surface of the product. This statement is valid for solvent-based paints as well as water-based paint.

Tags on the product can be removed without causing any damage to its surface.

Health – safety – environment

ANNEX 13 : Reflection factor

Object	Reflection test through the JIS-K-5602.				
Execution date	03.06.2013				
Product	Soleo, Careo, Vertigo, Diameo				
Outcomes	The solar radiation is absorbed three times more by the composite wood than by the aluminum.				

The absorption of the solar radiation and a very low reflection factor prevent any risk of glare for the neighborhood.

ANNEX 14 : Fire reaction

Object	Fire reaction test using a radiation located 30 mm away from the test tube during 20 minutes through the NF P 92-501 standard.			
Date d'obtention	16.04.2013			
Organisme	Centre Scientifique et Technique du Bâtiment (CSTB), Département de Sécurité, Structures et Feu, France			
Product	Soleo, Careo, Vertigo, Diameo			
Outcome	M2 fire ranking awarded.			

The product is combustible and hardly flammable.

ANNEX 15 : Absence of radioactivity

Object	Absence of radioactivity in the product. 06.12.2012 Unitika Environmental Technical Center Ltd., Japon				
Date d'obtention					
Organisme					
Product	Soleo, Careo, Vertigo, Diameo				
Outcome	No detection of radioactivity				

The product is not radioactive.

ANNEX 16 : Absence of toxic elements

Object	Presence of heavy metals and formaldehyde emission.			
Execution date	20.12.2012			
Organisme	Chemical Evaluation and Research Institute, Japon			
Product	Soleo, Careo, Vertigo, Diameo			
Outcomes	No emission of heavy metals and/or formaldehyde detected.			

The product is nontoxic.

Formaldehyde (CH20) :	0
Cadmium (Cd) :	0
Brominated flame retardants (RFB) :	0
Lead (Pb) :	0
Polyvinyl chloride (PVC) :	0
Selenium (Se) :	0
Mercury (Hg) :	0
Chromium (Cr) :	0
Arsenic (AS) :	0
Perfluorinated compounds (PFC) :	0
Phtalates (PFO, DBP, BBP, DEHP):	0

ANNEX 17 : Minimal carbon footprint

Object	Determination of the carbon footprint of the product.		
Execution date	14.06.2013		
Product	Soleo, Careo, Vertigo, Diameo		
Outcome	The product has a carbon footprint of 9.005 kg of CO ₂ / kg of product.		

The carbon footprint is lower than the one of the exotic wood.

Complete tests in following pages

Additional information:

- Safety data sheets
- Specific delivery conditions
- Quality assurance plan finishing and extrusion
- Notice
- Guarantee

ANNEXES 52 - 119

- TESTS 53
- SAFETY DATA SHEETS 113
- SPECIFIC DELIVERY CONDITIONS 115

Water Penetration Test

Product : **Soleo** (WPC-AL Hybrid)

1. Objective

The objective of this test was to examine the strength of the interface between the WPC and the AL. By applying ink to the product it can be determined if there is any notable penetration between AL and WPC over 1 week.

2. Test method (green color)

- 1. The test samples are treated by accelerated exposure to hot and cold temperatures: 2 hours at -30°C and 2 hours at 80°C for 50 cycles.
- 2. Dip the WPC-Al Hybrid samples into a tank filled with 40cm of liquid ink (green color).
- **3.** Seal up the case to avoid evaporation of ink and keep at 25°C during 1 week.
- **4.** Rinse off samples with water and keep dry for 1 day.
- 5. Scrape the WPC material from the AL and investigate the interfacebetween those.

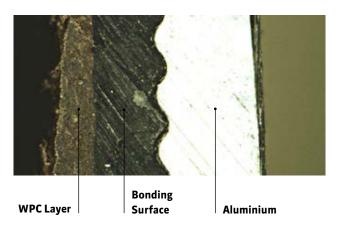
3. Results

1. The pictures bellow show that the yellow ink did not penetrate between the WPC and Aluminium layers.

Sample 1

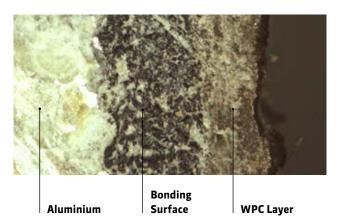
Sample 2

Peel-off Test under High Temperature, Humidity & Hot Water


Product : Soleo (0.25 and 0.4mm) (WPC-AL Hybrid)

Test Method

- Check the peeling off of the (0.25mm) WPC layer from the aluminium surface after constant high temperature (70 degrees Celsius) and high humidity (95%) during 30 days.
- Check the peeling off of the WPC (0.4mm) layer from the aluminium surface after constant immersion in hot water (80 degrees Celsius) during 14 days.


Picture 1

The WPC layer of 0.25mm does not show cracks and is not peeled off from the aluminium surface.

Picture 2

The WPC layer of 0.4mm does not show cracks and is not peeled off from the aluminium surface.

Results

- Pictures 1 and 2 show no cracks nor peeled off WPC from the aluminium surface was found.
- A thinner WPC layer does not decrease the compatibility between the WPC layer and the aluminium surface.
- The thickness of the WPC layer does not reduce the durability or longevity of the hybrid profile.
- The aging process of WPC is not related to its thickness.
- A hybrid profile with a 1mm WPC layer needs to be extruded and sanded with greater care and under stricter tolerances than a profile with a 2mm thick WPC layer.
- The quality inspection will be stricter for hybrid profiles delivered with a 1mm WPC layer thickness.

Aging UV Test Test

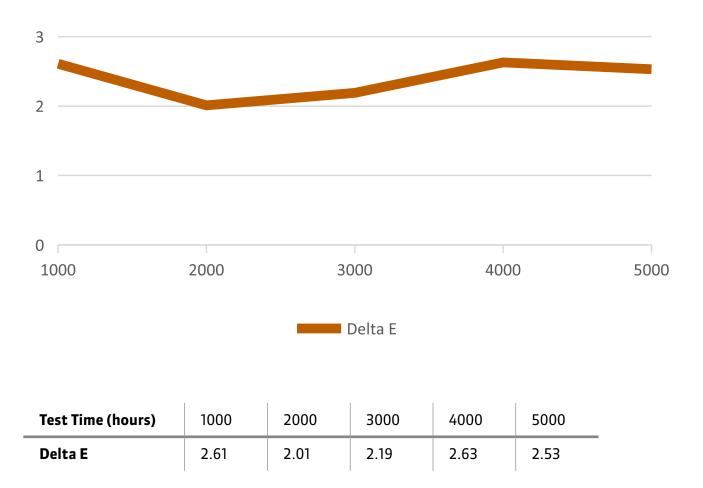
Product : **Soleo** (WPC-AL Hybrid)

Color

Palissander

Test method

Accelerated weathering resistance test using Sunshine WeatherMeter, according to JIS-K1571-2010.


Test condition

Black panel temperature: 63 °C

Spray cycle

18 minutes in 120 minutes (using ion-exchange water).

Delta E of a Soleo profile :

Aging Test

Product : **Soleo** (WPC-AL Hybrid)

1. Hot – Humid & Dry Test

Test method :

Alternate product between water of 60 degrees Celsius for 5 days and dry conditions at 80 degrees Celsius for 2 days, during 45 cycles.

Results:

Passed without changes to product surface No cracks nor change in color.

Observation :

2. Cold Hot Test

Test method :

Alternate product between -20 degrees Celsius for 2 hours and 80 degrees Celsius for 2 hours, during 50 cycles.

Results:

Passed without changes to product surface. No cracks nor change in color.

Observation :

3. SUV Test

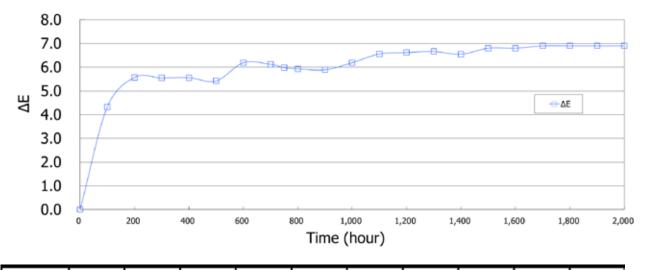
Test method :

Submit product to 2000 hours of UV radiation.

Test Machine :

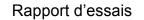
SUV-W151 EYE Super UV tester / Iwasaki Electric co., Ltd.

Results :


- The Total Color Change (Delta E) showed an immediate color change due to fade of wood powder after 100 hours but very little further change up to 2000 hours of exposure.
- Following the test the material surface is smooth and does not show any cracks nor peeled-off surface layers.
- 1000 hours is generally considered equal to twenty years of outdoor usage.

Blank (0 H)

SUV 2 000 H


	Time (H)	100	200	300	400	500	600	700	800	900	1,000
	ΔE	4.3	5.6	5.6	5.6	5.4	6.2	6.1	5.9	5.9	6.2
I	Time(H)	1,100	1,200	1,300	1,400	1,500	1,600	1,700	1,800	1,900	2,000
	ΔE	6.6	6.6	6.7	6.6	6.8	6.8	6.9	6.9	6.9	6.9

Resistance of bended profiles to humidity

client:	Geolam Management G	mbH. Churerstraße 47.	CH-8808 Pfäffik	on Sz	7
numéro de commande:	SAP-4066	,			_
Réception de	s échantillons:				
22.04.2013 (pa	ar la poste)				
Échantillons:					
Nombre	Désignation / N°	,		Su	perficie
3 pièces	Profilé en bois c	intré Soleo 11			
Test:					
Test / Norme			Durée d test	lu	Appareil utilisé pour le te
	e-variation climatio orme DIN EN ISO		24 cycle	es	A-SC KBG 400, Fa. Liebisch
Échantillons 3 échantillons	Date de début 26.04.13	Durée du test 24 cycles	Évaluation aucun cha		ement visible
Évaluation:					
Évaluation: Les énchantillo	ons ont satisfait au				
Les énchantillo	ons ont satisfait au				
Les énchantillo Commentaire	s / Annexe:	x exigences.			
Les énchantillo Commentaire		x exigences.			
Les énchantillo Commentaire Documentation	s / Annexe:	x exigences.			
Les énchantillo Commentaire Documentation	s / Annexe: n imagée en annex	x exigences.			
Les énchantillo Commentaire Documentation	s / Annexe: n imagée en annex	x exigences.)cerA
Les énchantillo Commentaire Documentation	s / Annexe: n imagée en annex	x exigences.	W	. l	n du laboratoire
Les énchantillo Commentaire Documentation	s / Annexe: n imagée en annex	x exigences.	W	. l	
Les énchantillo Commentaire Documentation	s / Annexe: n imagée en annex	x exigences.	W	. l	
Les énchantillo Commentaire Documentation	s / Annexe: n imagée en annex	x exigences.	W	. l	
Les énchantillo Commentaire Documentation	s / Annexe: n imagée en annex	x exigences.	W	. l	
Les énchantillo Commentaire Documentatior Schwäbisch G	s / Annexe: n imagée en annex	x exigences.	W	. l	
Les énchantillo Commentaire Documentation	s / Annexe: n imagée en anne: münd, 02.07.2013	Xe Deutsche IfO - Institut fül Alexander-von	Dire	Ction	n du laboratoire Bankverbindung: BW Bank BLZ 600 501 01, Konto 800 8891
Les énchantillo Commentaire Documentatior Schwäbisch G	s / Annexe: n imagée en anne: münd, 02.07.2013	Deutsche IfO - Institut für Alexander-von EG möhn) Alexander-von EG möhn) D.73529 Schwartsfühn	Dire	Ctio	n du laboratoire Bankverbindung: BW Bank BLZ 600 501 01, Konto 800 8891 SWIFT/BIC: SOLA DE ST

client: numéro de commande: Geolam Management GmbH, Churerstraße 47, CH-8808 Pfäffikon Sz SAP-4066

Documentation imagée



Image 1 – Échantillons aprés le test

Image 2 – Échantillons aprés le test

Page 2/2

Durch die DAkkS (Deutsche Aktreditierungsstelle GmbH) nach DIN EN ISO/IEC 17025 akkreditietes Prüflabor. Die akkreditierten Prüfverfahren sind mit dem Symbol * gekennzeichnet. IfO - Institut für Oberflächentechnik GmbH Alexander-von-Humboldt-Str. 19 D-73529 Schwäbisch Gmünd Geschäftsführer: Hans Pfeifer, Michael Müller Amtsgericht Ulm HRB 701796 VAT/US-HD: DE 177718678 Tel. +49 7171 10407-0, www.ifo-gmbh.de Bankverbindung: BW Bank BLZ 600 501 01, Konto 800 8891 SWIFT/BIC: SOLA DE ST IBAN: DE63 6005 0101 0008 0088 91 Finarzami Schwäbisch Gmünd Steuer-Nr.: 83085/24935

Color Stability Test

Product : **Soleo** (WPC-AL Hybrid)

Colors :

Palissander, ebony, paldao, teak.

Objective :

Submit four color samples to SUV and SWOM tests.

Method :

The samples were mounted and exposed to an SUV according to standard JIS K5400 (K5600).

Results:

The initial color and color stability are provided in the following table.

Table 1: EYE Super UV Tester (Accelerated UV Testing)

	Dunction	Date		color a	lifference	
	Duration	Date	ΔΕ	ΔL	Δa	Δb
	100H	121120	4.3	4.3	0.3	-0.5
	200H	121126	5.6	5.4	0.2	-1.2
	300H	121204	5.6	5.5	0.7	-0.8
Palissander	400H	121211	5.6	5.4	0.9	-0.6
	500H	121221	5.4	5.3	1.3	-0.4
	600H	121226	6.2	6.0	1.6	0.2
	700H	130115	6.1	5.8	1.8	0.4
	100H	121016	0.9	0.1	0.2	-0.9
	200H	121023	3.2	-2.9	0.3	-1.4
Ebony	300H	121029	4.3	-3.8	0.1	-2.0
	400H	121108	5.0	-4.5	0.1	-2.2
	500H	121114	5.7	-5.2	0.1	-2.4
	100H	121016	4.3	4.2	0.5	0.7
	200H	121023	2.8	2.0	1.1	1.6
Paldao	300H	121029	2.2	1.3	1.3	1.2
ĺ	400H	121108	2.09	0.1	1.5	1.3
	500H	121114	2.4	-1.0	1.7	1.3
Teak	100H	121016	5.0	4.2	1.0	2.7
ĺ	200H	121023	7.9	2.6	3.1	6.7
ľ	300H	121029	9.3	1.9	4.5	7.9
ĺ	400H	121108	10.1	1.8	5.2	8.4
ĺ	500H	121114	10.6	2.0	5.6	8.7

Table 2: Sunshine Weather Meter (Sunshine Carbon Arc)

	Duration	Data		color di	fference	
	Duration	Date	ΔΕ	ΔL	Δa	Δb
	100H	121204	2.46	-0.07	-0.03	-2.46
	200H					
Ebony	300H					
	400H					
	500H					
	100H	121204	4.57	4.51	0.29	-0.68
	200H					
Paldao	300H					
	400H					
	500H					
	100H	121204	6.33	5.25	1.63	3.15
	200H					
Teak	300H					
	400H					
	500H					

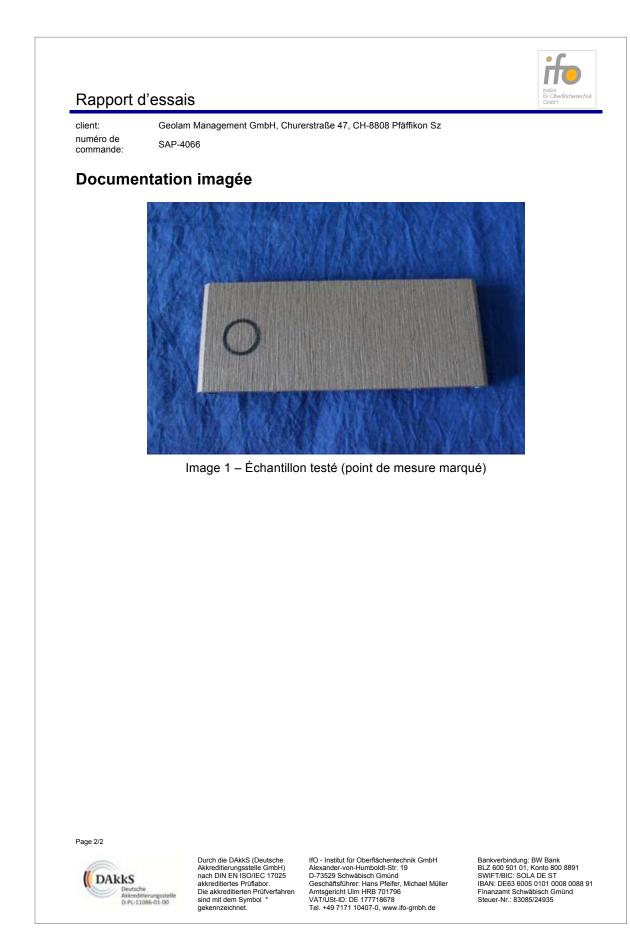
Resistance of bended profiles to bad weather

client:	Geolam Management (GmbH. Churerstraße 47	7. CH-8808 Pfäffikon S	Sz
numéro de commande:	SAP-4066	,	,	
Réception de 09.04.2013 (p	es échantillons:			
	• /			
Échantillons		0		
Nombre	Désignation / N		Si	uperficie
1 pièce	Profilé en bois o			
Test:				
Test / Norme				Appareil utilisé pour le tes
	ccélérées selon la	norme	1000h	XXL+, Fa. Atlas
DIN EN ISO 1	1341*			
Exigence:				
apres 1000h:	aucun changemer	nt de couleur ni d	reclat	
Résultat:				
Échantillons	Date de début	Durée du test	Évaluation	
1 échantillon	15.04.13	1000h	Couleur: avan	t le test: ΔE = 39,7
			aprés	s le test: ΔE = 37,8
				e test: G = 1,35
			aprés le	e test: G = 1,40
Évaluation:				
	a satisfait aux exig	ences		
		011000.		
Commentair	es / Annexe:			
Documentatio	on imagée en anne	xe		
Schwäbisch C	Smünd, 02.07.201	3		
			1.1	1 and
			VU. 1	vaia
			Direc	tion du laboratoire

CARKS Deutsche Akkreditierungsstelle D-FL-11086-01-00
 Durch die DAkkS (Deutsche
 IfO - Inst.

 Akkreditierungsstelle GmbH)
 Alexande

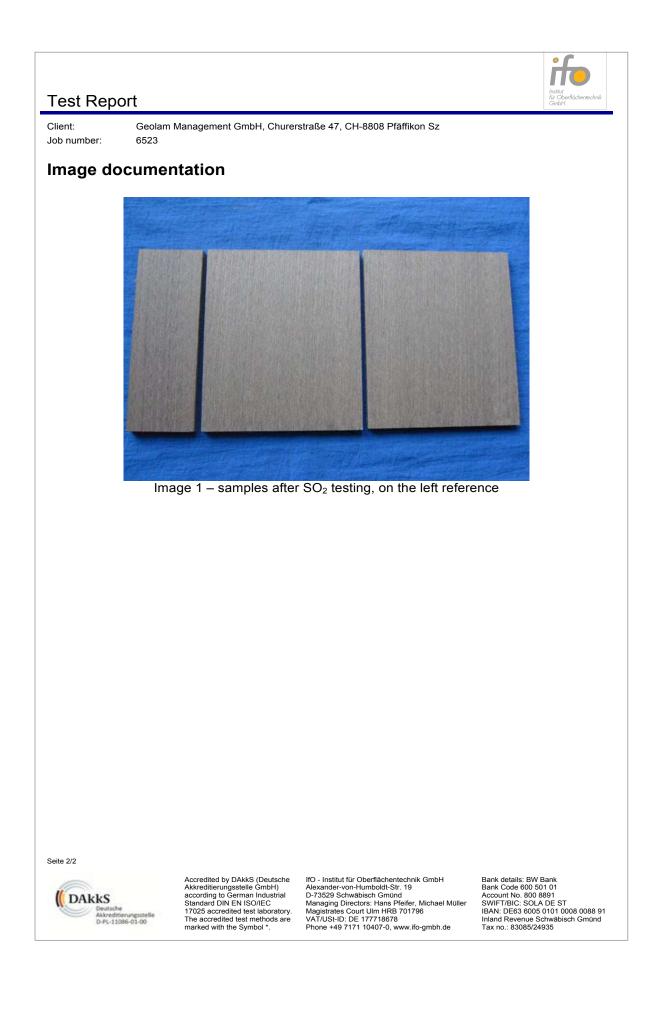
 nach DIN EN ISO/IEC 17025
 D-73529


 akkreditiertes Prüflabor.
 Geschäft

 Die akkreditierten Symbol *
 VAT/USt

 gekennzeichnet.
 Tel. +49

IfO - Institut für Oberflächentechnik GmbH Alexander-von-Humboldt-Str. 19 D-73529 Schwäbisch Gmünd Geschäftsführer: Hans Pfeifer, Michael Müller Amtsgericht Ulm HRB 701796 VATUSI-ID: DE 177718678 Tel. +49 7171 10407-0, www.ifo-gmbh.de Bankverbindung: BW Bank BLZ 600 501 01, Konto 800 8891 SWIFT/BIC: SOLA DE ST IBAN: DE63 6005 0101 0008 0088 91 Finanzamt Schwäbisch Gmünd Steuer-Nr.: 83085/24935



					ifə
Test Report					Institut für Oberflächentechnik GmbH
	Geolam Management Gm 6523	bH, Churerstraße 47	, CH-8808 Pfäffikon S	z	
Sample Date:	oiling)				
2014-02-18 (m	alling)				
Samples:	I				
Count 4 pieces	Name / No. Profile: Geolam				
4 pieces	Type: Soleo 5				
	Sample size: 150	x 120 x 7 mm			
	Color: ebony	X 120 X / IIIII			
Tests:				r	1
Name / Standa				Time	Equipment
Sulfur dioxide c with 0,2 I SO ₂ /	corrosion testing in DIN EN ISO 3231	an alternating a	atmosphere	24 Cycles	A-SC KBG 400, Fa. Liebisch
Requirements	:				
-					
Results:					
Sample	Test	Time	Evaluation		
2 samples	SO ₂ -test	24 cycles	no visible chan	ige	
	ttachments: ntation after testing nples from SO ₂ -tes		compared with a	reference s	ample.
	nünd, 2014-05-19 a <i>qendorf</i>			11	7
41	genart		W.	Noas	2
Laboratory n	nanager/ Dr. Paper	ndorf	Deputy of La	boratory ma	anager/ W. Noack
Seite 1/2					
DAkks Deutsche Akkreditierung D-PL-11086-03		le GmbH) Alexander an Industrial D-73529 S SO/IEC Managing est laboratory. Magistrate methods are VAT/USt-I	ut für Oberflächentechnik Gm -von-Humboldt-Str. 19 Schwäbisch Gmünd Directors: Hans Pfeifer, Mich se Court Ulm HRB 701796 D: DE 177718678 9 7171 10407-0, www.ifo-gml	Bank C Accoun ael Müller SWIFT/ IBAN: I Inland F	etails: BW Bank ode 600 501 01 tt No. 800 8891 IBIC: SOLA DE ST DE63 6005 0101 0008 0088 91 Revenue Schwäbisch Gmünd : 83085/24935

					ifo	
Test Repo	rt				Institut für Oberflächentechnik GmbH	
Client: Geolam Management GmbH, Churerstraße 47, CH-8808 Pfäffikon Sz Job number: 6523						
Sample Date						
2014-02-18 (
Samples:						
Count	Name / No.					
3 pieces	Profile: Geolam					
	Type: Soleo 10					
	Sample size: 150) x 120 x 7 mm	1			
	Color: ebony					
Tests:						
Name / Stand	lard			Time	Equipment	
Sulfur dioxide	corrosion testing in	an alternating	atmosphere	24 Cycles		
	/ DIN EN ISO 3231			- j	Liebisch	
Requiremen	ts:			I		
-						
Results:						
Sample	Test	Time	Evaluation			
2 samples	SO ₂ -test	24 cycles	no visible char	nae		
	: Attachments: inentation after testing	a.				
	mples from SO ₂ -tes		compared with a	a reference s	ample.	
Schwäbisch	Gmünd, 2014-05-19					
B. Papendorf W. NoaA						
Laboratory manager/ Dr. Papendorf Deputy of Laboratory manager/ W. Noack						
Seite 1/2						
DAkkS Deutsche Akkreditier D-FL-1108	Accredited by DAk Akkreditierungsste according to Germ Standard DIN EN 1 17025 accredited te The accredited tes marked with the Sy	Ile ĠmbH) Alexano an Industrial D-7352 SO/IEC Managii est laboratory. Magistra t methods are VAT/US	titut für Oberflächentechnik Gr fer-von-Humboldt-Str. 19 9 Schwäbisch Gmünd 19 Directors: Hans Preifer, Mict ates Court Ulm HRB 701796 t-ID: DE 177718678 49 7171 10407-0, www.ifo-gm	Bank C Accoun nael Müller SWIFT. IBAN: [Inland I	etails: BW Bank ode 600 501 01 It No. 800 8891 BIC: SOLA DE ST DE63 6005 0101 0008 0088 91 Revenue Schwäbisch Gmünd : 83085/24935	

) ne / No. file: Geolam e: Soleo 70	1 25 30 x 50 x 30 n	mm curved	Time 1000h	Equipment	
ne / No. file: Geolam e: Soleo 70 nple size: 13 lius: 500 mr or: ebony	25 30 x 50 x 30 n	mm curved			
ne / No. file: Geolam e: Soleo 70 nple size: 13 lius: 500 mr or: ebony	25 30 x 50 x 30 n	mm curved			
file: Geolam e: Soleo 70 nple size: 13 lius: 500 mr or: ebony	25 30 x 50 x 30 n	mm curved			
file: Geolam e: Soleo 70 nple size: 13 lius: 500 mr or: ebony	25 30 x 50 x 30 n	mm curved			
e: Soleo 70 nple size: 13 lius: 500 mr or: ebony	25 30 x 50 x 30 n	mm curved			
I EN ISO 92	227 NSS*				
I EN ISO 92	227 NSS*				
I EN ISO 92	27 NSS^		1000n		
			1	MSC 1000, Fa. Liebisch	
I -	[
		Evaluation	Evaluation no visible change		
NSS					
	480h		slightly visible change, white spots are salt residues		
	720h		Samples appear brighter than at the beginning and the wood surface is roughened.		
	1000h		Samples appear brighter and matt than at the beginning and the wood surface is roughened.		
nments: on at the beg	ginning, afte	r 240h, 480h, 720h a	nd 1000h te	esting.	
, 2014-05-2	0				
dorf		W.	NoaE	2	
ger/ Dr. Pap	endorf	Deputy of La	aboratory m	anager/ W. Noack	
	stelle GmbH) / rman Industrial I N ISO/IEC I	Alexander-von-Humboldt-Str. 19 D-73529 Schwäbisch Gmünd Managing Directors: Hans Pfeifer, Micl	Bank Accou nael Müller SWIF	details: BW Bank Code 600 501 01 int No. 800 8891 T/BIC: SOLA DE ST DE63 6005 0101 0008 0088 91	
	Accredited by D Akkreditierungs according to Ge Standard DIN E 17025 accredite The accredited	Akkreditierungsstelle GmbH) according to German Industrial Standard DIN EN ISO/IEC 17025 accredited test laboratory. The accredited test methods are	Accredited by DAkkS (Deutsche Akkreditierungsstelle GmbH) according to German Industrial Standard DIN EN ISO/IEC 17025 accredited test laboratory. The accredited test methods are VAT/USI-ID: DE 177718678	Accredited by DAkkS (Deutsche IfO - Institut für Oberflächentechnik GmbH Bank Akkreditierungsstelle GmbH) Alexander-von-Humboldt-Str. 19 Bank according to German Industrial D-73529 Schwäbisch Gmünd Accou Standard DIN EN ISO/IEC Managing Directors: Hans Pfeifer, Michael Müller SWIF 17025 accredited test laboratory. VAT/USt-ID: DE 177718678 Inlanc	

Rapport d'essais

client: numéro de commande: Geolam Management GmbH, Churerstraße 47, CH-8808 Pfäffikon Sz SAP-4066

Réception des échantillons:

09.04.2013 (par la poste)

Échantillons:

Echantinons.		
Nombre	Désignation / N°	Superficie
1 pièce	Profilé en bois cintré Soleo 10	

Test:

e du test Appareil utilisé pour le tes
000h XXL+, Fa. Atlas
-

Exigence:

aprés 1000h: aucun changement de couleur ni d'éclat

Résultat:

noountat.			
Échantillons	Date de début	Durée du test	Évaluation
1 échantillon	15.04.13	1000h	Couleur: avant le test: $\Delta E = 39,7$
			aprés le test: ΔE = 37,8
			Éclat: avant le test: G = 1,35
			aprés le test: G = 1,40

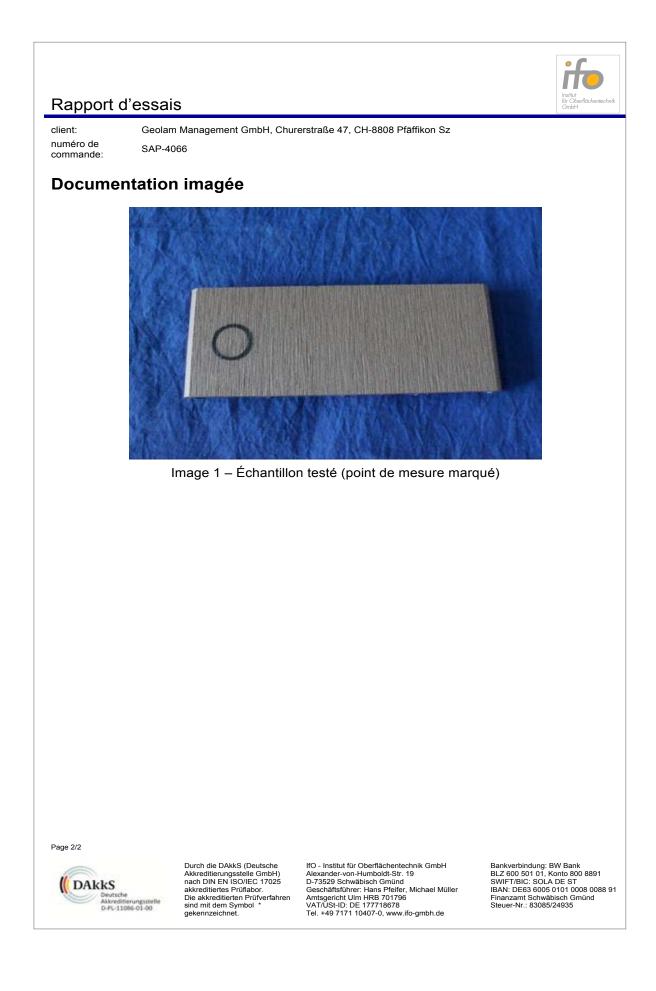
Évaluation:

L'échantillon a satisfait aux exigences.

Commentaires / Annexe:

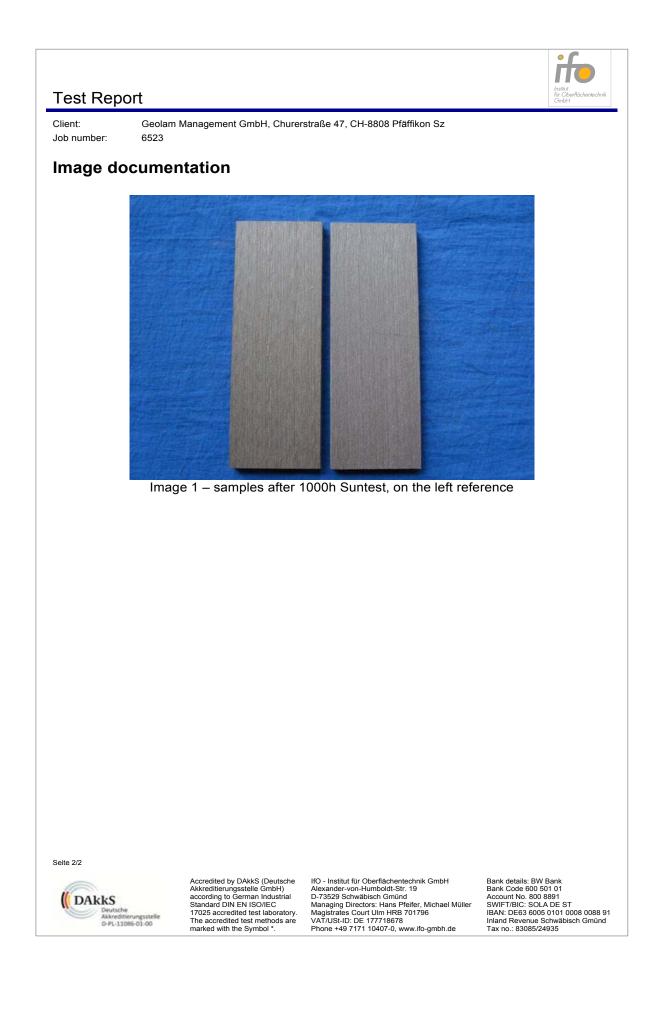
Documentation imagée en annexe

Schwäbisch Gmünd, 02.07.2013

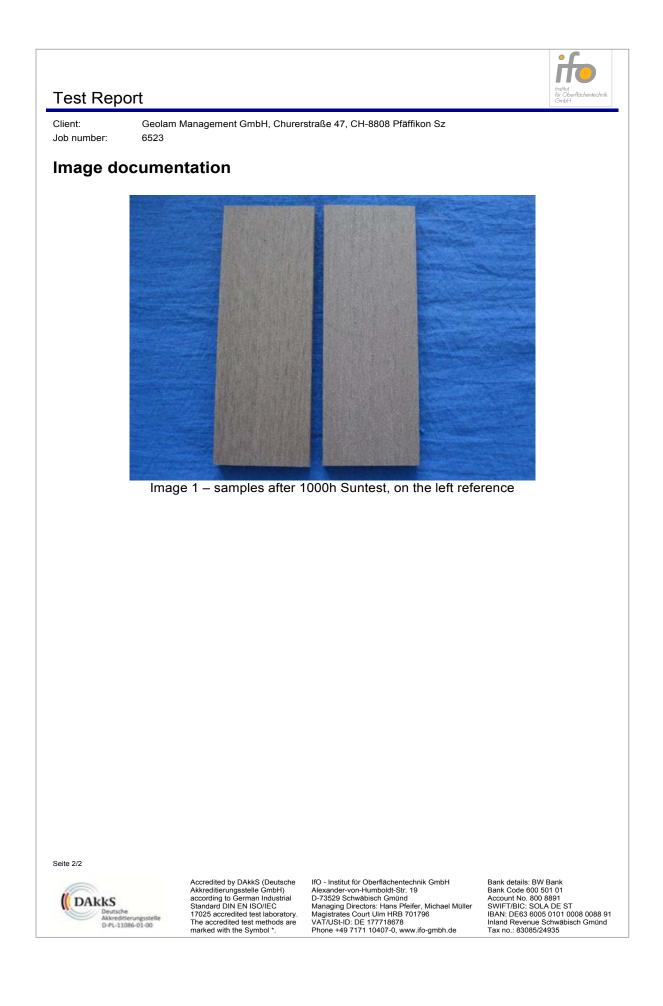

Direction du laboratoire

Page 1/2

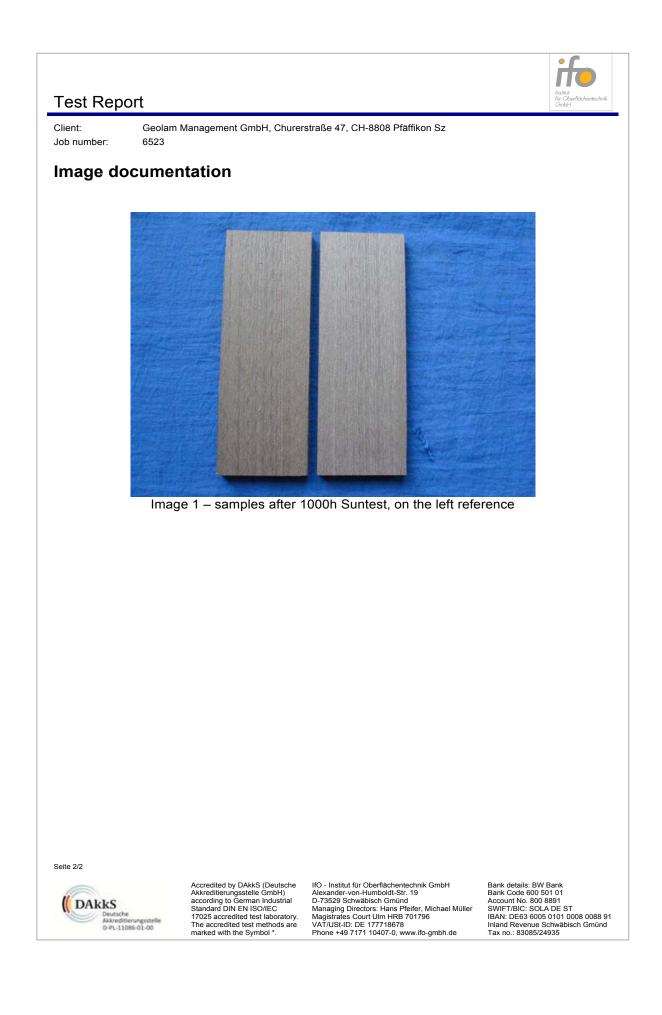
Durch die DAkkS (Deutsche Akkreditierungsstelle GmbH) nach DIN EN ISO/IEC 17025 akkreditiertes Prüflabor. Die akkreditierten Prüfverfahren sind mit dem Symbol * gekennzeichnet. IfO - Institut für Oberflächentechnik GmbH Alexander-von-Humboldt-Str. 19 D-73529 Schwäbisch Gmünd Geschäftsführer: Hans Pfeifer, Michael Müller Amtsgericht Uim HRB 701796 VAT/US-ID: DE 1777/18678 Tel. +49 7171 10407-0, www.ifo-gmbh.de Bankverbindung: BW Bank BLZ 600 501 01, Konto 800 8891 SWIFT/BIC: SOLA DE ST IBAN: DE63 6005 0101 0008 0088 91 Finanzamt Schwäbisch Gmünd Steuer-Nr.: 83085/24935



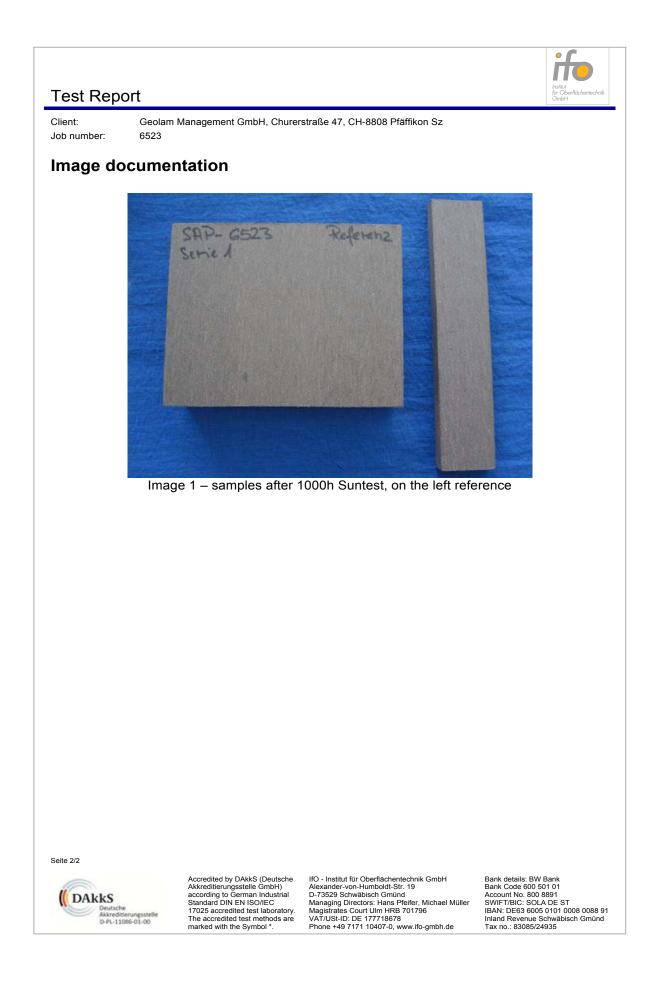
					ifa
Test Report					Institut für Öberflächentechnik GmbH
	eolam Management Gm 523	bH, Churerstraße	17, CH-8808 Pfäffikon Sz	2	
Sample Date: 2014-02-18 (mai					
2014-02-16 (11)	iiirig)				
Samples:					
	Name / No.				
	Profile: Geolam Type: Soleo 10 Sample size: 150	x 120 x 7 mn	1		
	Color: ebony				
Tests:					
Name / Standard				Time	Equipment
Accelerated Wea (DIN EN ISO 11)	athering Test acc. 341* withdrawn)	DIN EN ISO	16474-2	1000h	XXL+, Fa. Atlas
Poquiremente:					
Requirements:	00h: no changes i	n color and o	055		
ouncest after 100	on. no changes i		000		
Results:					
Sample	Test	Time	Evaluation		
1 samples	Suntest	1000h	Color after testi	ng: ΔE = 2	2,4
			Gloss: before te	esting: G =	3,8
			after test	ting: G =	2,9
		I			
Assessment: The samples fulf	fil the requirement	ts.			
	•				
Comments / Att					
	tation after testing			h	ement before and ofter the
					ement before and after the angle.
Suntest on the same sample. The gloss was determined at 85° measuring angle.					
Schwäbisch Gm	ünd, 2014-05-19				
n n					2455
& ta	gendorf		10	11000	\bigcirc
	1			Noat	
Laboratory ma	anager/ Dr. Paper	ndorf	Deputy of Lal	boratory m	anager/ W. Noack
Seite 1/2					
	Accredited by DAkk	S (Deutsche IfO - In:	titut für Oberflächentechnik Gmb	H Bank	details: BW Bank
DAkks	Akkreditierungsstell according to Germa	e GmbH) Alexano n Industrial D-7352	ler-von-Humboldt-Str. 19 9 Schwäbisch Gmünd	Bank Acco	Code 600 501 01 unt No. 800 8891
Deutsche Akkreditierungsst	Standard DIN EN IS 17025 accredited te The accredited test	st laboratory. Magistr	ng Directors: Hans Pfeifer, Micha ates Court Ulm HRB 701796 St-ID: DE 177718678	IBAN	T/BIC: SOLA DE ST : DE63 6005 0101 0008 0088 91 d Revenue Schwäbisch Gmünd
D-PL-11086-01-00	marked with the Sy		+49 7171 10407-0, www.ifo-gmbl		no.: 83085/24935



Test Repor	t				Institut frir Oberflächentechnik Grabbi	
Client: Job number:	Geolam Management Gm 6523	bH, Churerstraße 4	7, CH-8808 Pfäffikon S	Z		
Sample Date: 2014-02-18 (n	nailing)					
Samples:						
Count 2 pieces	Name / No. Profile: Geolam					
2 0000	Type: Soleo 0 Sample size: 150 Color: ebony	x 120 x 7 mm				
Tests:						
Name / Stand				Time	Equipment	
	/eathering Test acc. 11341* withdrawn)	. DIN EN ISO 1	16474-2	1000h	XXL+, Fa. Atlas	
Requirement						
Suntest after	1000h: no changes i	in color and glo	DSS			
Results:	Taat	Time	Fuchation			
Sample 1 samples	Test Suntest	Time 1000h	Evaluation Color after test	ing: $\Lambda F = 2$	7	
l'oumpiee	Cuntoot	100011	Gloss: before t	-		
				sting: $G =$		
Assessment: The samples f	ulfil the requiremen	ts				
Comments / Image docum	Attachments: entation after testing	Y				
The color and	gloss determination	of the sample			ement before and after the	
Suntest on the	e same sample. The	gloss was det	ermined at 85° n	neasuring a	ngle.	
Schwäbisch G	6münd, 2014-05-19					
2	Pagendorf			11 /	0	
\$	agenacry		W.	Noat	2	
Laboratory manager/ Dr. Papendorf Deputy of Laboratory manager/ W. Noack					anager/ W. Noack	
Laboratory						
Laboratory						
Laboratory						
Laboratory						
	Accredited by DAkk Akkreditierungsstell		itut für Oberflächentechnik Gm r-von-Humboldt-Str. 19		details: BW Bank Code 600 501 01	



Test Report					Institut für Cherlächentechnik		
•					Ginari		
	Geolam Management GmbH, Churerstraße 47, CH-8808 Pfäffikon Sz						
Job number: 6	523						
Sample Date:							
2014-02-18 (ma	ailing)						
Samples:							
Count	Name / No.						
2 pieces	Profile: Geolam						
	Type: Soleo 5						
	Sample size: 150	x 120 x 7 mm	1				
	Color: ebony						
Tests:							
Name / Standar	ď			Time	Equipment		
	eathering Test acc.	DIN EN ISO	16474-2	1000h	XXL+, Fa. Atlas		
	341* withdrawn)						
L				L	1		
Requirements	:						
Suntest after 10	00h: no changes i	in color and gl	OSS				
Results:	Test	Time	Fuchation				
Sample 1 samples	Test Suntest	Time 1000h	Evaluation Color after tes	ting: AE - 2	7		
i samples	Sumesi	100011		· ·			
			Gloss: before	testing: G =	5,5		
		after testing: G = 5,5					
Assessment:							
The samples fu	Ifil the requirement	ts.					
• • • •							
Comments / At							
	ntation after testing		e was carried out	by measure	ement before and after the		
Suntest on the same sample. The gloss was determined at 85° measuring angle.							
Schwäbisch Gn	nünd, 2014-05-19						
00							
-K to	gendorf		1.	11 /	7		
42 Mg	genuerf		W.	Noas	7		
Laboratory m	anager/ Dr. Paper	ndorf			anager/ W. Noack		
	- J	-	- <u>-</u>		0		
Seite 1/2							
	Accredited by DAkk		stitut für Oberflächentechnik Gr		details: BW Bank		
(DAkkS	Akkreditierungsstell according to Germa	in Industrial D-7352	ler-von-Humboldt-Str. 19 9 Schwäbisch Gmünd 9 Directore: Hone Bfeifer Mie	Accou	Code 600 501 01 Int No. 800 8891		
Deutsche Akkreditierungs		st laboratory. Magistr	ng Directors: Hans Pfeifer, Mic ates Court Ulm HRB 701796 St-ID: DE 177718678	IBAN:	T/BIC: SOLA DE ST DE63 6005 0101 0008 0088 91 I Revenue Schwäbisch Gmünd		
D-Pt-11086-01-	marked with the Sy		+49 7171 10407-0, www.ifo-gm		o.: 83085/24935		



					instru-		
Test Repor	t				für Oberflächentechnik GmbH		
Client:	Geolam Management GmbH, Churerstraße 47, CH-8808 Pfäffikon Sz						
Job number:	6523						
Sample Date: 2014-02-18 (m	ailina)						
Samples: Count	Name / No.						
2 pieces	Profile: Geolam						
	Type: Soleo 11.0)					
	Sample size: 150) x 50 x 30 n	nm				
	Color: ebony						
Tests:							
Name / Standa	ard			Time	Equipment		
Accelerated W	eathering Test acc	. DIN EN IS	O 16474-2	1000h	XXL+, Fa. Atlas		
(DIN EN ISO 1	1341* withdrawn)						
Requirements			-				
Suntest after 1	000h: no changes	in color and	gloss				
Results:							
Sample	Test	Time	Evaluation				
1 samples	Suntest	1000h	Color after testi	ng: ΔE = 2,	6		
			Gloss: before testing: G = 3,3				
				-			
	after testing: G = 3,3						
A							
Assessment: The samples f	ulfil the requiremen	nts					
Comments / A							
	entation after testing		ale constant and the state				
			determined at 85° m		ement before and after the		
Sumest on the	same sample. The	= 91055 Was		leasuring a	ngie.		
Schwäbisch G	münd, 2014-05-19						
	lagendorf				0		
D	a prm nort		(2)	NOAE	7		
Bi	gonnort			100-10	-		
	4	ndorf		horatory ma	anager/W/Noack		
	manager/ Dr. Pape	ndorf		boratory ma	anager/ W. Noack		
	4	ndorf		boratory ma	anager/ W. Noack		
	4	ndorf		boratory ma	anager/ W. Noack		
	4	ndorf		boratory ma	anager/ W. Noack		
	4	ndorf		boratory ma	anager/ W. Noack		
Laboratory r	4	ndorf		boratory ma	anager/ W. Noack		
Laboratory r	nanager/ Dr. Pape	kS (Deutsche IfO lie GmbH) Ale)H Bank d	anager/ W. Noack Hetails: BW Bank 20de 600 501 01		
Laboratory n Seite 1/2	Accredited by DAk Akkreditierungsste according to Germ Standard DIN EN I	kS (Deutsche IfO lie GmbH) Ale an Industrial D-7- SO/IEC Ma	- Institut für Oberflächentechnik Gmt xander-von-Humboldt-Str. 19 '3529 Schwäbisch Gmünd naging Directors: Hans Pfeifer, Micha	oH Bank o Bank (Accou tel Müller SWIFT	letails: BW Bank Code 600 501 01 nt No. 800 8891 //BIC: SOLA DE ST		
Laboratory r	Accredited by DAk Akkreditierungsste according to Germ Standard DIN EN 17025 accredited to The accredited to	kS (Deutsche IfO lle GmbH) Ale an Industrial D-7 SO/IEC Ma est laboratory. Ma tmethods are VA	- Institut für Oberflächentechnik Gmt xander-von-Humboldt-Str. 19 '3529 Schwäbisch Gmünd naging Directors: Hans Pfeifer, Micha gistrates Court Ulm HRB 701796 TUSHD: DE 177716678	oH Bank o Bank o Accou iel Müller IBAN: IBAN: Inland	Ietails: BW Bank Code 600 501 01 nt No. 800 8891 //IC: SOLA DE ST DE63 6005 0101 0008 0088 91 Revenue Schwäbisch Gmünd		
Laboratory n Seite 1/2	Accredited by DAk Akkreditierungsste according to Germ Standard DIN EN 1 17025 accredited	kS (Deutsche IfO lle GmbH) Ale an Industrial D-7 SO/IEC Ma est laboratory. Ma tmethods are VA	- Institut für Oberflächentechnik Gmt xander-von-Humboldt-Str. 19 '3529 Schwäbisch Gmünd naging Directors: Hans Pfeifer, Micha gistrates Court Ulm HRB 701796	oH Bank o Bank o Accou iel Müller IBAN: IBAN: Inland	Ietails: BW Bank Sode 600 501 01 nt No. 800 8891 /BIC: SOLA DE ST DE63 6005 0101 0008 0088 91		

Test Report

Client: Job number: Geolam Management GmbH, Churerstraße 47, CH-8808 Pfäffikon Sz 6523

Sample Date:

2014-02-18 (mailing)

Samples:

Name / No.
Profile: Geolam
Type: Soleo 5
Sample size: 150 x 120 x 7 mm
Color: ebony

Tests:

Name / Standard	Time	Equipment
Sulfur dioxide corrosion testing in an alternating atmosphere with 0,2 I SO ₂ / DIN EN ISO 3231^*	24 Cycles	A-SC KBG 400, Fa. Liebisch
Accelerated Weathering Test acc. DIN EN ISO 16474-2 (DIN EN ISO 11341* withdrawn)	1000h	XXL+, Fa. Atlas

Requirements:

SO₂-test after 24 cycles: no visible change Suntest after 1000h: no changes in color and gloss

Results:

Results.			
Sample	Test	Time	Evaluation
2 samples	SO ₂ -test	24 cycles	no visible change
1 samples	Suntest	1000h	Color after testing: $\Delta E = 2,7$
			Gloss: before testing: G = 5,5
			after testing: G = 5,5

Assessment:

The samples fulfil the requirements.

Comments / Attachments:

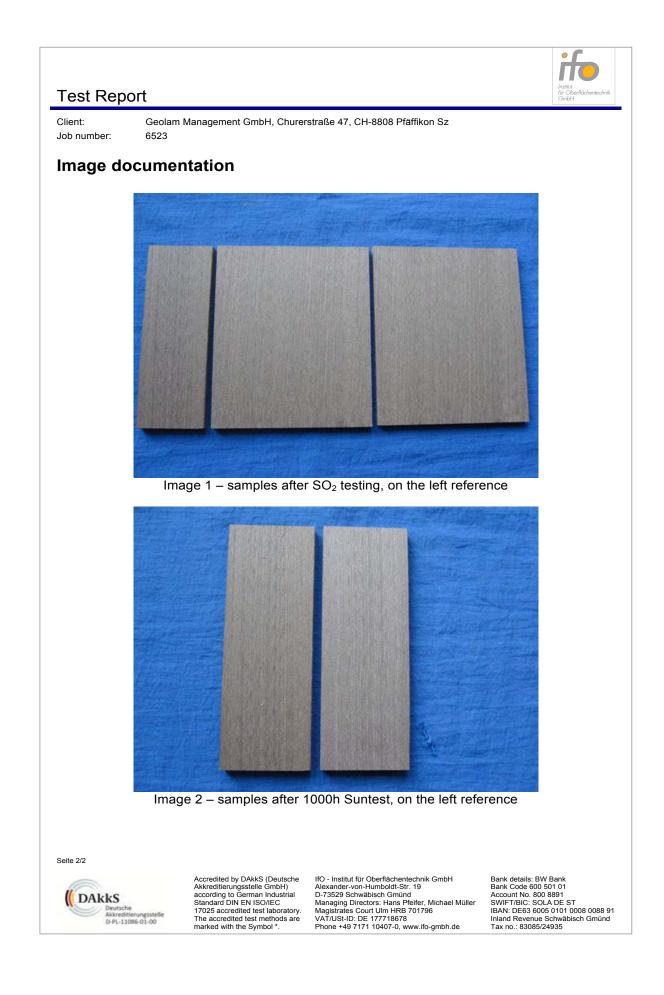
Image documentation after testing.

The tested samples from SO₂-test were visually compared with a reference sample. The color and gloss determination of the sample was carried out by measurement before and after the Suntest on the same sample. The gloss was determined at 85° measuring angle.

Schwäbisch Gmünd, 2014-05-09

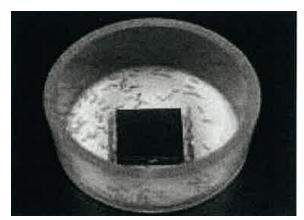
& Pagendorf

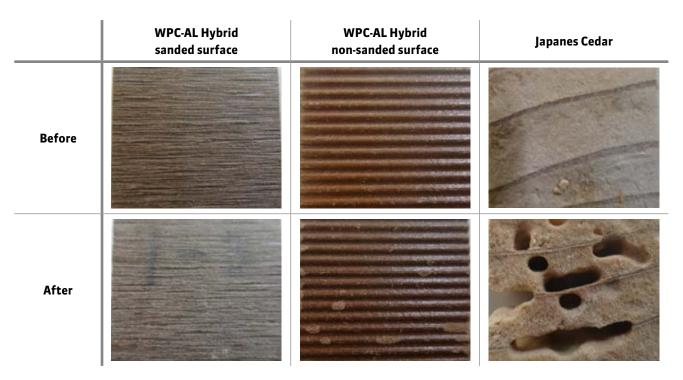
Laboratory manager/ Dr. Papendorf


Deputy of Laboratory manager/ W. Noack

Seite 1/2

Accredited by DAkkS (Deutsche Akkreditierungsstelle GmbH) according to German Industrial Standard DIN EN ISO/IEC 17025 accredited test laboratory. The accredited test methods are marked with the Symbol *. IfO - Institut für Oberflächentechnik GmbH Alexander-von-Humboldt-Str. 19 D-73529 Schwäbisch Gmünd Managing Directors: Hans Pfeifer, Michael Müller Magistrates Court Ulm HRB 701796 VAT/USI-ID: DE 1777718678 Phone +49 7171 10407-0, www.ifo-gmbh.de Bank details: BW Bank Bank Code 600 501 01 Account No. 800 8891 SWIFT/BIC: SOLA DE ST IBAN: DE63 6005 0101 0008 0088 91 Inland Revenue Schwäbisch Gmünd Tax no.: 83085/24935


Termite Resistance test


Product : **Soleo** (WPC-AL Hybrid)

Test method : JIS-K-1571-2010

	Weight loss (mg)	Weight loss (%)	Termite mortality rate (%)
Hybrid profile - sanded	26.8	0.5	47.6
Hybrid profile - not sanded	4.8	0.1	50.1
Japanese Cedar sapwood	4.8	34.6	23.5

Testing picture :

Rot Resistance test

Product : **Soleo** (WPC-AL Hybrid)

Test method : JIS-K-1571-2010

	Fomitopsis palustris after 12 weeks	Trametes versicolor after 12 weeks
Hybrid profile - sanded	0.5	0
Hybrid profile – not sanded	0.1	0
Japanese Cedar sapwood	27.6	33.4

Testing picture

Hardness and Abrasion test

Product : Soleo (WPC-AL Hybrid)

1. Hardness - Brinell Scale

The Brinell scale characterizes the indentation hardness of materials through the scale of penetration of an indenter, loaded on a material test-piece. It is one of several definitions of hardness in materials science. Test results according to standard JIS Z 21010-1994 were as follows :

	Japanese beech	Teak	Soleo (between the rib)	Soleo (on the rib)
Brinell scale (N/mm2)	19.5	24.5	26.8	52.3

Results:

Soleo is applicable to be used for decking as the table shows it is harder than teak and beech wood.

2. Abrasion Resistance

Abrasion is a measurement of weight loss by a sample being impacted by repeated abrasion force using sandpaper. The weight loss in the abrasion test was as follows:

1000g, 500 rotation	Blank (g)	Results (g)	Weight loss (g)
Soleo (4G)	51.236	51.168	0.068
Duo (2G)	79.482	79.253	0.229

Tested by JAS Flooring A method

Results:

The abrasion test shows that Soleo profiles support stronger abrasion than 2G products, such as Geolam Duo used for decking.

Geolam Duo

Geolam Soleo

Resistance to Peeling off of Surface Material

Product : Soleo (WPC-AL Hybrid)

1. Scope

This testing standard is defined by JIS-K-a5600-5-6 (Testing methods for paints - Part 5: Mechanical property of film - Section 6: Adhesion test). It specifies a test method for assessing the resistance of WPC surface layer to separation from the Aluminum surface when a right angle lattice pattern is cut into the WPC surface layer, penetrating through to the Aluminum surface. The property measured by this empirical test procedure depends among other factors, on the adhesion of the WPC surface layer to either the preceding WPC surface layer or the Aluminum surface layer.

2. Apparatus

Cutting tool

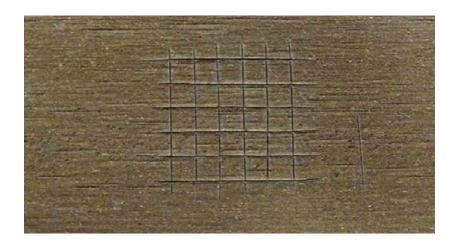
Single-blade cutting tool with 20 to 30 degree angle edge and a blade thickness of 0.43mm ± 0.03mm.

Guiding and spacing edges

In order to space the cuts correctly, a series of guiding and spacing edges is necessary when using a single-blade cutting tool. Guiding and spacing edges is ten spacing edges 1mm thick.

Adhesive tape

The adhesive tape has a width of 25mm.


3. Procedure

Number of cuts

- The number of cuts in each direction of the lattice pattern shall be six (4mm cuts to cuts span).
- Hold the cutting tool with the blade normal to the test panel surface. With uniform pressure on the cutting tool and using the appropriate spacing guide, make the agreed number of cuts in the coating at a uniform cutting rate. All the cuts shall penetrate the Aluminum Surface.
- Repeat this operation, making further parallel cuts of equal number, crossing the original cuts at 90° so that a lattice pattern is formed.
- Place the center of the tape over the lattice in a direction parallel to one set of cuts and smooth the tape into place over the area of the lattice and for a distance of at least 20mm beyond with a finger.
- Five min. after having applied the tape, remove the tape by grasping the free end and pulling it off steadily in 0.5 s to 1.0 s at an angle which is as close as possible to 60°

4. Results

Detachment/peeling off of small flakes of the WPC surface layer at the intersections of the cuts. A cross cut area must be below 1/25 (4%) from 4mm cuts * 25 lattice pattern.

Possibility and effects of cleaning paint stains

Product : Soleo (WPC-AL Hybrid)

Test Method

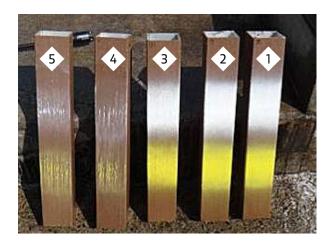
- 1. Apply antigraffiti on the WPC-AL Hybrid surface and keep during 48hrs
- 2. Paint white spray (solvent base) and yellow spray (water base) and keep during 24hrs
- **3.** As shown in table 1, apply graffi guard (remover) and keep during 15 minutes
- **4.** Rinse the surface using high pressure water and investigate effectiveness of high (aprx 7Mpa) and low (2-4Mpa) pressure

	Antigraffiti	Graffiti Guard	
#1	TDS2221	2000	
#2	TDS5400	2060	
#3	TDS5020	N/A	
#4	TDS2221	2020	
#5	TDS5400	2030	

Table 1: Combination antigraffiti and graffi guard

Results

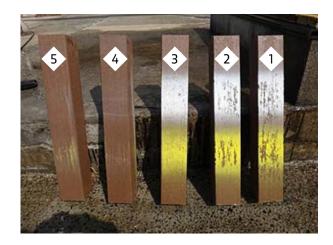
Table 2 shows #4 is the best combination to remove Graffiti.


Table 2 : test results

Test	Antigraffiti	Graffiti Guard	Paint	Pressure		
	Antigraniti Graniti Guaru		Faint	Low	High	
#1	1052221	2000	Solvent	1	3	
#1	1052221	TDS2221 2060	Water	1	3	
	TDS5400	2060	Solvent	1	3	
#2			Water	1	3	
	TDS5020 N/A	N1 /A	Solvent	1	2	
#3		N/A	Water	1	2	
	1052221	2020	Solvent	4	5	
#4	TDS2221	21 2030	Water	4	5	
<u> </u>		2020	Solvent	4	5	
#5	TDS5400	2030	Water	4	5	

Reference

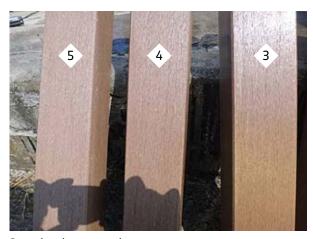
Picture 1: with low pressure water spray



Picture 3: Apply antigraffiti on the 4G surface and keep during 48hrs

After low pressure water spray, brushing the surface.

Picture 2: with high pressure water spray



- Sample 4 and 5 with Graffiti Guard 2030 starts
- Sample 1, 2 and 3 do not show the performance
- Sample 4 and 5, graffiti is completely removed
- Sample 1 and 2, at closer distance water spray helps to remove the graffiti

No effect

Apply 2030, brushing and high pressure water spray.

Completely removed

Conclusion

GraffiGuard

GraffiGuardR 2030 shows very good performance as graffiti is completely gone.

Using a brush and water also helps to remove the graffiti. GraffiGuardR 2060 does not work.

Anti Graffiti

AntiGraffitiGuard TDS2221 shows better performance. We believe TDS2221 makes the surface flat which removes the paint easily from the surface.

Paint

There is no differences between solvent based paint and water based paint.

Both AntiGraffitiGuard TDS2221 and GraffiGuardR 2030 do not cause chemical damage on the surface of WPC-AL Hybrid.

Reflectance factor test

Product : **Soleo** (WPC-AL Hybrid)

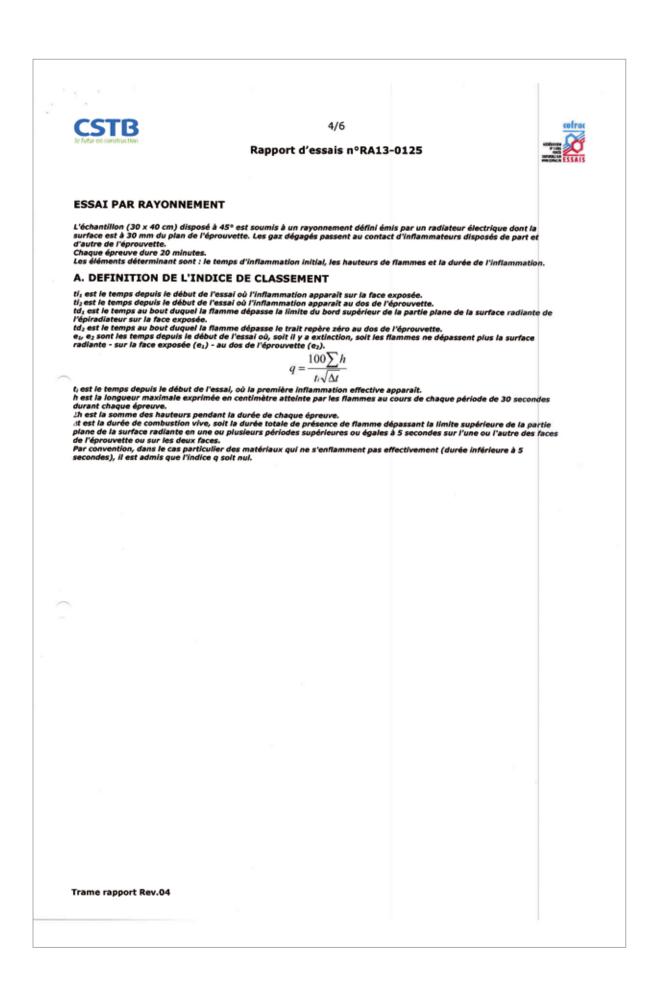
Test method : JIS-K-5602

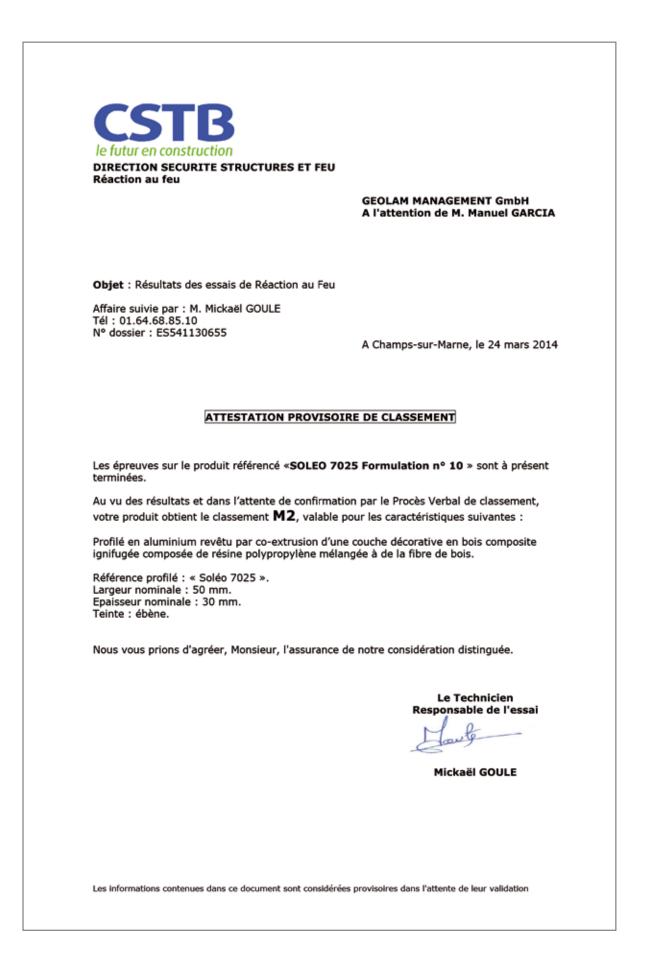
Test results :


				Reflection fac	tor
			All wave lengths	Visual light range	near-infrared range
			300-2500nm	300-780nm	780-2500nm
		1	15.92	13.96	18.57
	Palissander	2	14.74	13.11	16.95
		Av	15.33	13.54	17.76
		1	30.75	24.80	38.75
	Teak	2	29.08	23.30	36.85
		Av	29.92	24.05	37.80
WPC-AL Hybrid	Ebony	1	12.25	11.07	13.82
		2	12.40	11.11	14.13
		Av	12.33	11.09	13.98
	Paldao	1	21.28	18.94	24.43
		2	21.30	18.95	24.46
		Av	21.29	18.94	24.45
		1	71.90	67.40	77.60
	Silver color	2	71.90	67.40	77.50
		Av	71.90	67.40	77.55
		1	25.70	15.00	39.40
Aluminum	Bronze color	2	25.50	14.90	39.00
		Av	25.60	14.95	39.20
		1	23.60	12.60	37.70
	Bronze color (matte finish)	2	23.50	12.60	37.60
		Av	23.55	12.60	37.65

Fire reaction test

Re	FRUCTURES ET FEU éaction au feu	CES-V	ERBAL DE	CLASSEN	IENT	
	DE RE	CTIO	N AU FEU D	O'UN MAT	FERIAU	
S	elon l'arrêté du 21 novem Laboratoire		atif à la réaction au feu d lu Ministère de l'Intérieu			gement
		Γ	Nº RA13-	0125		
		Valat	ble 5 ans à compter	du 16 avril 201	3	
\cap	Matériau présenté j		GEOLAM MANAG Churerstrasse 4 8808 PFAFFIKO SUISSE	GEMENT 7		
	Marque commercial	e :	GEOLAM SOLEO	WHS 4G		
	de résine polypropylène	vêtus par co- mélangée à	-extrusion d'une couche de la fibre de bois. « Soléo 10 » et « Soléo 1		composite ignifugée	composée
	Epaisseurs nominales de Epaisseurs mesurées de (« Soléo 11 »). Largeurs nominales : 12	es parois exté résine de bo 28 mm (« Sole tales : 53 mm	m (« Soléo 10 ») et 233 érieures d'aluminium : 1, bis : environ 1,7 à 2,0 m léo 10 ») et 51,5 mm (« m (« Soléo 10 ») et 31,5 (80 %) : Palissandre.	.10 mm (« Soléo 1 m (« Soléo 10 ») e Soléo 11 »).	0 ×) et 1,40 mm (« S t environ 1,2 à 1,7 m	
	Nature de l'essai	:	Essai par rayon	nement		
\bigcirc	Classement :	à 2,0	ble pour une gamme mm et pour une ga I,5 à 53,0 mm	d'épaisseurs d mme d'épaisse	e résine de bois d irs totales de pro	le 1,2 filés
			nexe 2 – Paragraphe es essais décrits dans le			
		similaires. Il n	aractéristiques de l'échantil ne constitue donc pas une ce la consommation.			15-27 à
			Ch	amps-sur-Mari	ne, le 16 avril 201	3
		echnicien		Le Chef du		
	Respons	able de l'es	ssar	P.O (lanto	BONHORITE	
		Di da				





CSTB				5/6				cofra
le futur en construction			Rapport d	l'essais n°R	A13-012	5		
B. OBSERVA REALISEES		ET CRITER	ES DE CLAS	SEMENT D	ES DIFFE	RENTES	5 EPREUVES	
Résultats : 1	épreuve	effectuée par	sens sur l'épa	aisseur 31.5 m	nm du produ	uit référe	ncé « GEOLAM	4G ».
Eprouvette	ti ₁	544 s				t,	544 s	
nº 2	td1	544 s				Δt Σh	349 s	
Sens transversal	e1 ti2	900 s					69 cm 15 cm	
Coloris bois	td ₂					h _{max}	15 cm	
DOIS	e ₂	-				q =	0.68	
	Tei	225 -					205	
Eprouvette nº 4	ti ₁ td ₁	325 s 325 s				t _i ∆t	325 s 696 s	
Sens	e1	1 021 s				Σh	258 cm	
longitudinal	ti2	-				h _{max}	18 cm	
Coloris bois	td ₂	-						
	e ₂	-				q =	3.01	
donc à 3 épres Eprouvette	ti1 td1	observons que plémentaires s 398 s 398 s	le sens longit sur ce sens afi	udinal est le s n de détermin	er le classe	défavora ment. t _i Δt	398 s 419 s	édons
donc à 3 épres Eprouvette nº 3 Sens Iongitudinal	ti ₁ td ₁ e ₁ ti ₂	398 s	le sens longit sur ce sens afi	udinal est le s n de détermin	er le classe	ment.		édons
donc à 3 épres Eprouvette nº 3 Sens	ti ₁ td ₁ e ₁	398 s 398 s 398 s 817 s	le sens longit sur ce sens afi	udinal est le s n de détermin	er le classe	ment. Δt Σh	398 s 419 s 165 cm	édons
donc à 3 épreu Eprouvette n° 3 Sens longitudinal Coloris bois	tl ₁ td ₁ e ₁ ti ₂ td ₂ e ₂	398 s 398 s 398 s 817 s 	le sens longit sur ce sens afi	udinal est le s n de détermir	er le classe	t _i Δt Σh h _{max} q =	398 s 419 s 165 cm 15 cm 2.03	édons
donc à 3 épres Eprouvette n° 3 Sens longitudinal Coloris bois	ti1 td1 e1 ti2 td2 e2 ti1	398 s 398 s 817 s — — — 260 s	sur ce sens afi	udinal est le s n de détermir	er le classe	t _i Δt Σh h _{max} q =	398 s 419 s 165 cm 15 cm 2.03 260 s	édons
donc à 3 épres Eprouvette n° 3 Sens longitudinal Coloris bois Eprouvette n° 5 Sens	ti ₁ td ₁ e ₁ ti ₂ td ₂ e ₂ td ₁ td ₁ td ₁	398 s 398 s 398 s 817 s 	516 s 522 s	udinal est le s n de détermin	er le classe	t_i Δt Σh h_{max} q = t_i Δt	398 s 419 s 165 cm 15 cm 2.03	édons
donc à 3 épreu Eprouvette n° 3 Sens longitudinal Coloris bois Eprouvette n° 5 Sens longitudinal	ti1 td1 td1 e1 ti2 td2 e2 td1 td1 td1 td1 td1 td2 e2	398 s 398 s 817 s — — — 260 s 260 s	sur ce sens afi	udinal est le s n de détermin	1 150 s 1 200 s	t_i Δt Σh h_{max} q = t_i Δt	398 s 419 s 165 cm 15 cm 2.03 260 s 600 s	édons
donc à 3 épres Eprouvette n° 3 Sens longitudinal Coloris bois Eprouvette n° 5 Sens	ti1 td1 td1 td2 td2 e2 td2 e2 td1 td1 td1 td1 td1 td2 td2 td2 td2 td2 td2 td2 td2 td2 td2	398 s 398 s 817 s — — — 260 s 260 s 286 s	sur ce sens afi	udinal est le s	1 150 s 1 200 s	ment. t _i Δt Σh h _{max} q = t _i Δt Σh h _{max}	398 s 419 s 165 cm 15 cm 2.03 260 s 600 s 357 cm 26 cm	édons
donc à 3 épreu Eprouvette n° 3 Sens longitudinal Coloris bois Eprouvette n° 5 Sens longitudinal Coloris	ti1 td1 e1 td2 e2 td1 td1 e1 td1 td2 e2 td1 td1 td2 td2 td2 td2 td2 td2 td2 td2 td2 td2	398 s 398 s 817 s — — — 260 s 260 s 286 s	sur ce sens afi	udinal est le s	1 150 s 1 200 s	ti Δt Σh h _{max} q = t _i Δt	398 s 419 s 165 cm 15 cm 2.03 260 s 600 s 357 cm	édons
donc à 3 épreu Eprouvette n° 3 Sens longitudinal Coloris bois Eprouvette n° 5 Sens longitudinal Coloris bois	ti1 td1 e1 td2 e2 td1 td1 e1 td2 e2 td1 td2 td2 e2 td1 td2 td2 td2 td2 td2 td2 td2 td2 td2 td1 td1 td1 td1 td1 td1 td1 td1 td1 td1	398 s 398 s 817 s 260 s 260 s 286 s 286 s 286 s	516 s 522 s	n de détermir	1 150 s 1 200 s	ment. t_i Δt Σh h_{max} q = t_i Δt Σh h_{max} q = t_i $t_i =$ $t_i =$	398 s 419 s 165 cm 15 cm 2.03 260 s 600 s 357 cm 26 cm 5.61 214 s	édons
donc à 3 épreu Eprouvette n° 3 Sens longitudinal Coloris bois Eprouvette n° 5 Sens longitudinal Coloris bois Eprouvette n° 6	ti1 td1 e1 td2 e2 td2 e2 td1 td1 e1 td1 e1 td2 e2 td2 e2 td2 td2 e2 td2 td2 td2 td2 td2 td2 td2 td2 td2 td	398 s 398 s 817 s 260 s 260 s 260 s 286 s 	516 s 522 s 398 s	539 s	1 150 s 1 200 s 974 s	ment. ti Δt Σh hmax q = ti Δt Σh hmax q = ti Δt Σh hmax ti Δt Σh hmax	398 s 419 s 165 cm 15 cm 2.03 260 s 600 s 357 cm 26 cm 5.61 214 s 355 s	édons
donc à 3 épreu Eprouvette n° 3 Sens longitudinal Coloris bois Eprouvette n° 5 Sens longitudinal Coloris bois	ti1 td1 e1 td2 e2 ti1 td1 e1 td2 e2 ti1 td1 td2 e2 ti1 td2 e2 ti1 td1 td2 e1 td2 td2 e2 td2 td2 e2 td2 td2 e2 td2 td2 td2 td2 td2 td2 td2 td2 td2 td	398 s 398 s 817 s 260 s 260 s 286 s 286 s 286 s	516 s 522 s	n de détermir	1 150 s 1 200 s 974 s 962 s	ment. ti Δt Σh hmax q = ti Δt Σh hmax q = ti Δt Σh hmax ti Δt Σh hmax	398 s 419 s 165 cm 15 cm 2.03 260 s 600 s 357 cm 26 cm 5.61 214 s 355 s 264 cm	édons
donc à 3 épreu Eprouvette n° 3 Sens longitudinal Coloris bois Eprouvette n° 5 Sens longitudinal Coloris bois	ti1 td1 e1 td2 e2 td2 e2 td1 td1 e1 td1 e1 td2 e2 td2 e2 td2 td2 e2 td2 td2 td2 td2 td2 td2 td2 td2 td2 td	398 s 398 s 398 s 817 s 260 s 260 s 286 s 	516 s 522 s 398 s	539 s	1 150 s 1 200 s 974 s 962 s	ment. ti Δt Σh hmax q = ti Δt Σh hmax q = ti Δt Σh hmax ti Δt Σh hmax	398 s 419 s 165 cm 15 cm 2.03 260 s 600 s 357 cm 26 cm 5.61 214 s 355 s	édons
donc à 3 épreu Eprouvette n° 3 Sens longitudinal Coloris bois Eprouvette n° 5 Sens longitudinal Coloris bois	ti1 td1 e1 td2 e2 ti1 td1 e1 td2 e2 ti1 td1 td2 e2 ti1 td2 e2 ti2 td2 e2 ti2 td2 e2 ti2 td2 td2 e2 td2 td2 e2 td2 td2 td2 td2 td2 td2 td2 td2 td2 td	398 s 398 s 398 s 817 s 260 s 260 s 286 s 	516 s 522 s 398 s	539 s	1 150 s 1 200 s 974 s 962 s	ment. t, Δt Σh h _{max} q = t, Δt Σh h _{max} q = t, Δt Σh h _{max} q = t, Δt Σh h _{max}	398 s 419 s 165 cm 15 cm 2.03 260 s 600 s 357 cm 26 cm 5.61 214 s 355 s 264 cm 26 cm	édons
donc à 3 épreu Eprouvette n° 3 Sens longitudinal Coloris bois Eprouvette n° 5 Sens longitudinal Coloris bois Eprouvette n° 6 Sens longitudinal Coloris bois	ti1 td1 e1 td2 e2 td2 e2 td1 td1 e1 td2 e2 td2 e2 td2 e2 td2 e2 td2 e2 td2 e2 td2 e2 td2 e2 td2 e2 td2 e2 td2 e2 td2 e2 td2 td2 e2 td2 td2 e2 td2 td2 td2 td2 td2 td2 td2 td2 td2 td	398 s 398 s 398 s 817 s 260 s 260 s 286 s 	516 s 522 s 398 s	539 s	1 150 s 1 200 s 974 s 962 s	ment. ti Δt Σh hmax q = ti Δt Σh hmax q = ti Δt Σh hmax ti Δt Σh hmax	398 s 419 s 165 cm 15 cm 2.03 260 s 600 s 357 cm 26 cm 5.61 214 s 355 s 264 cm	édons
donc à 3 épreu Eprouvette n° 3 Sens longitudinal Coloris bois Eprouvette n° 5 Sens longitudinal Coloris bois	ti1 td1 e1 td2 e2 td2 e2 td1 td1 e1 td2 e2 td2 e2 td2 e2 td2 e2 td2 e2 td2 e2 td2 e2 td2 e2 td2 e2 td2 e2 td2 e2 td2 e2 td2 td2 e2 td2 td2 e2 td2 td2 td2 td2 td2 td2 td2 td2 td2 td	398 s 398 s 398 s 817 s 260 s 260 s 286 s 	516 s 522 s 398 s	539 s	1 150 s 1 200 s 974 s 962 s	ment. t, Δt Σh h _{max} q = t, Δt Σh h _{max} q = t, Δt Σh h _{max} q = t, Δt Σh h _{max}	398 s 419 s 165 cm 15 cm 2.03 260 s 600 s 357 cm 26 cm 5.61 214 s 355 s 264 cm 26 cm	édons
donc à 3 épreu Eprouvette n° 3 Sens longitudinal Coloris bois Eprouvette n° 5 Sens longitudinal Coloris bois Eprouvette n° 6 Sens longitudinal Coloris bois	ti1 td1 e1 td2 e2 td2 e2 td1 td1 e1 td2 e2 td2 e2 td2 e2 td2 e2 td2 e2 td2 e2 td2 e2 td2 e2 td2 e2 td2 e2 td2 e2 td2 e2 td2 td2 e2 td2 td2 e2 td2 td2 td2 td2 td2 td2 td2 td2 td2 td	398 s 398 s 398 s 817 s 260 s 260 s 286 s 	516 s 522 s 398 s 420 s	539 s 852 s	1 150 s 1 200 s 974 s 962 s	ment. t, Δt Σh h _{max} q = t, Δt Σh h _{max} q = t, Δt Σh h _{max} q = t, Δt Σh h _{max}	398 s 419 s 165 cm 15 cm 2.03 260 s 600 s 357 cm 26 cm 5.61 214 s 355 s 264 cm 26 cm	édons
donc à 3 épreu Eprouvette n° 3 Sens longitudinal Coloris bois Eprouvette n° 5 Sens longitudinal Coloris bois Eprouvette n° 6 Sens longitudinal Coloris bois	ti1 td1 e1 td2 e2 td2 e2 td1 td1 e1 td2 e2 td2 e2 td2 e2 td2 e2 td2 e2 td2 e2 td2 e2 td2 e2 td2 e2 td2 e2 td2 e2 td2 e2 td2 td2 e2 td2 td2 e2 td2 td2 td2 td2 td2 td2 td2 td2 td2 td	398 s 398 s 398 s 817 s 260 s 260 s 286 s 	516 s 522 s 398 s 420 s	539 s	1 150 s 1 200 s 974 s 962 s	ment. t, Δt Σh h _{max} q = t, Δt Σh h _{max} q = t, Δt Σh h _{max} q = t, Δt Σh h _{max}	398 s 419 s 165 cm 15 cm 2.03 260 s 600 s 357 cm 26 cm 5.61 214 s 355 s 264 cm 26 cm	édons
donc à 3 épreu Eprouvette n° 3 Sens longitudinal Coloris bois Eprouvette n° 5 Sens longitudinal Coloris bois Eprouvette n° 6 Sens longitudinal Coloris bois	ti1 td1 td1 e1 td2 e2 td2 e2 td1 td1 td1 e1 td2 e2 td2 e2 td2 e2 td2 td2 e2 td2 e2 td2 td2 e2 td2 td2 e2 td2 e2 td2 td2 e2 td2 td2 e2 td2 td2 e2 td2 td2 e2 td2 td2 td2 td2 td2 td2 td2 td2 td2 td	398 s 398 s 398 s 817 s — — — 260 s 260 s 286 s — — — — 214 s 221 s — — — — —	516 s 522 s 398 s 420 s	539 s 852 s	1 150 s 1 200 s 974 s 962 s	ment. t, Δt Σh h _{max} q = t, Δt Σh h _{max} q = t, Δt Σh h _{max} q = t, Δt Σh h _{max}	398 s 419 s 165 cm 15 cm 2.03 260 s 600 s 357 cm 26 cm 5.61 214 s 355 s 264 cm 26 cm	édons
donc à 3 épreu Eprouvette n° 3 Sens longitudinal Coloris bois Eprouvette n° 5 Sens longitudinal Coloris bois Eprouvette n° 6 Sens longitudinal Coloris bois	ti1 td1 td1 e1 td2 e2 td2 e2 td1 td1 td1 e1 td2 e2 td2 e2 td2 e2 td2 td2 e2 td2 e2 td2 td2 e2 td2 td2 e2 td2 e2 td2 td2 e2 td2 td2 e2 td2 td2 e2 td2 td2 e2 td2 td2 td2 td2 td2 td2 td2 td2 td2 td	398 s 398 s 398 s 817 s — — — 260 s 260 s 286 s — — — — 214 s 221 s — — — — —	516 s 522 s 398 s 420 s	539 s 852 s	1 150 s 1 200 s 974 s 962 s	ment. t, Δt Σh h _{max} q = t, Δt Σh h _{max} q = t, Δt Σh h _{max} q = t, Δt Σh h _{max}	398 s 419 s 165 cm 15 cm 2.03 260 s 600 s 357 cm 26 cm 5.61 214 s 355 s 264 cm 26 cm	édons
donc à 3 épreu Eprouvette n° 3 Sens longitudinal Coloris bois Eprouvette n° 5 Sens longitudinal Coloris bois Eprouvette n° 6 Sens longitudinal Coloris bois Indice de cla	ti1 td1 td1 e1 td2 e2 td2 e2 td1 td1 e1 td2 e2 td2 e2 td1 td1 e1 td2 e2 td2 e2 td2 e2 td2 e2 td2 e2 td2 e2 td2 e2 td2 e2 td2 e2 td2 e2 td2 e2 td2 e2 td2 e2 td2 e2 td2 e2 td2 e2 td2 td2 e2 td2 td2 e2 td2 td2 e2 td2 td2 e2 td2 td2 e2 td2 td2 e2 td2 td2 td2 td2 td2 td2 td2 td2 td2 td	398 s 398 s 398 s 817 s — — — 260 s 260 s 286 s — — — — 214 s 221 s — — — — —	516 s 522 s 398 s 420 s	539 s 852 s	1 150 s 1 200 s 974 s 962 s	ment. t, Δt Σh h _{max} q = t, Δt Σh h _{max} q = t, Δt Σh h _{max} q = t, Δt Σh h _{max}	398 s 419 s 165 cm 15 cm 2.03 260 s 600 s 357 cm 26 cm 5.61 214 s 355 s 264 cm 26 cm	édons

CSTB le futur en construction		6/6 Rapport d'essais n°R/			
				ve (re	ESSA
Résultats (s « GEOLAM 4G	uite) :2 é ».	preuves effectuées par sens sur l'épaisse	ur 53 mm du produ	lit référencé	
Eprouvette	ti ₁ td ₁	 Aucune inflammation effective 	t, ∆t	-	
Sens	e ₁	-	Σh	_	
longitudinal Coloris	ti ₂	-	h _{max}	-	
bois	td ₂ e ₂	-	q =	0.00	
	-2		4 -	0.00	
Eprouvette	ti ₁	-	ti	-	
nº 2	td ₁ e ₁	 Aucune inflammation effective 	Δt Σh	_	
Sens transversal	ti2		h _{max}	-	
Coloris	td ₂ e ₂	-			
	e2	-	q =	0.00	
Eprouvette	ti ₁	766 s	ti	766 s	
nº 3	td1	767 s	Δt	133 s	
Sens longitudinal	e1 ti2	900 s	Σh	36 cm 9 cm	
Coloris bois	td ₂		h _{max}	9 cm	
DOIS	e ₂		q =	0.41	
	ti ₁				
Eprouvette n° 4	td ₁	 Aucune inflammation effective 	t, ∆t	-	
Sens transversal	e1	-	Σh	-	
Coloris	ti ₂ td ₂		h _{max}	-	
bois	e ₂	-	q =	0.00	
Indice de cla	comant				
	and the second second				
		$\overline{\mathbf{q}} = \frac{\sum \mathbf{q}}{\mathbf{n}} = 0,10$			
n est le nombr	e d'épreuv	es			
		FIN	DU RAPPORT D'	ESSAIS	
rame rapport	Rev.04				

GEOLAM MANAGEMENT GmbH A l'attention de M. Manuel GARCIA

Objet : Résultats des essais de Réaction au Feu

Affaire suivie par : M. Mickaël GOULE Tél : 01.64.68.85.10 N° dossier : ES541130655

A Champs-sur-Marne, le 31 mars 2014

ATTESTATION PROVISOIRE DE CLASSEMENT

Les épreuves sur le produit référencé « SOLEO 7026 Formulation n° 5 » sont à présent terminées.

Au vu des résultats et dans l'attente de confirmation par le Procès Verbal de classement, votre produit obtient le classement **M2**, valable pour les caractéristiques suivantes :

Profilé en aluminium revêtu par co-extrusion d'une couche décorative en bois composite ignifugée composée de résine polypropylène mélangée à de la fibre de bois.

Référence profilé : « Soléo 7026 ». Largeur nominale : 120 mm. Epaisseur nominale : 30 mm. Teinte : ébène.

Nous vous prions d'agréer, Monsieur, l'assurance de notre considération distinguée.

Le Technicien Responsable de l'essai

Mickaël GOULE

GEOLAM MANAGEMENT GmbH A l'attention de M. Manuel GARCIA

Objet : Résultats des essais de Réaction au Feu

Affaire suivie par : M. Mickaël GOULE Tél : 01.64.68.85.10 N° dossier : ES541130655

A Champs-sur-Marne, le 24 mars 2014

ATTESTATION PROVISOIRE DE CLASSEMENT

Les épreuves sur le produit référencé « SOLEO 7026 Formulation n° 10 » sont à présent terminées.

Au vu des résultats et dans l'attente de confirmation par le Procès Verbal de classement, votre produit obtient le classement **M1**, valable pour les caractéristiques suivantes :

Profilé en aluminium revêtu par co-extrusion d'une couche décorative en bois composite ignifugée composée de résine polypropylène mélangée à de la fibre de bois.

Référence profilé : « Soléo 7026 ». Largeur nominale : 120 mm. Epaisseur nominale : 30 mm. Teinte : ébène.

Nous vous prions d'agréer, Monsieur, l'assurance de notre considération distinguée.

Le Technicien Responsable de l'essai

Mickaël GOULE

Radioactivity test

UNITIKA ENVIRONMENTAL TECHNICAL CENTER LTD.

23,Ujikozakura Uji Kyoto,Japan TEL:+81-774-25-2522 FAX:+81-774-25-2355

ATTESTATION

Report No.: RVB7522 DATE: December 06,2012

This is to certify that we tested the following sample in accordance with the request as follows.

Requested by KURABO INDUSTRIES LTD.

Object of survey:	Aluminum-Recycled Wood Compound (LOT:120926)
Destination:	-
Shipper:	-
Buyer:	
L/C No.:	-
Invoice No.:	-
Location of Measurement	At the Tokyo Office of UNITIKA ENVIRONMENTAL TECHNICAL CENTER LTD.,Chuo,Tokyo,Japan
Date of Measurement:	December 05,2012,17:34
Survey Equipment:	NaI (TI) scintillation Survey Meter "ALOKA γ SURVEY METER TCS-172"

Result of Measurement

Measurement Point	Max. Value (µSv/h)	Min. Value (µSv/h)
Front side	0.07	0.06
Rear side	0.07	0.06
Left side	0.07	0.06
Right side	0.07	0.06
Upper side	0.07	0.06
Measurement Point	μSv/h	
Background Radiation	0.07	

Certified Radiation Protection Supervisor by Ministry Of Education, Culture,Sports,Science and Technology Japan

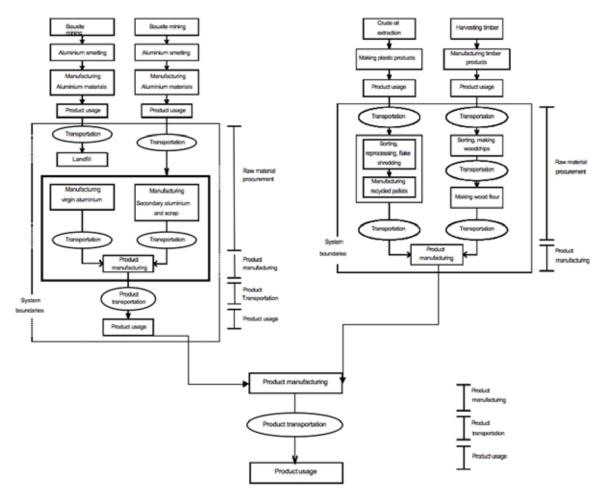
Cenichiro lokuda Kenichiro Tokuda

Dissolution test of heavy metals

Product : **Soleo** (WPC-AL Hybrid)

		CERI	Institute, Japan Tokyo laboratory	
			P	age 1 of 1 page
			Report No. :	172-12-H-0187
		Test Report		
1. Client Name :	VIDADO DI	DUSTRIES LTD.		
2. Date of Application		012 (No.172-12-1-0	1939)	
3. Sample :			und Material (LOT : 1	20926)
orbampio	- in the second second	ioyolea mooa oompo		one sample
4. Test Items and Metl	nods:			one equipt
4.1 Dissolution test				
		als contained in in	dustrial waste (Envir	conment Agency
Notification No.1 Cadmium (C		55.2 Electrotherma	l type atomic absorpti	on spectrometry
Lead (P	'b) : JIS K 0102 (54.2 Electrotherma	l type atomic absorpti	on spectrometry
Mercury (F			ency Notification No.5	9,1971
Selenium (S	e) : JIS K 0102 6	tomic absorption spe 7.2 Atomic absorpt	tion spectrometry by h	vdride
Arsenic (A	s): JIS K 0102 6	1.2 Atomic absorpt	tion spectrometry by h	ydride
4.2 Determination of) : JIS K 0102 6	5.2.1 Diphenylcarb	azide absorption spec	trometry
4.2 Determination of	: JIS A 1460(2	001) Desicator met	bod	
5. Test Results :	•			
5.1 Dissolution test	of the Heavy met	als		
Items	Uni		n·Recycled Wood erial (LOT : 120926)	Lower Limits of detection
Cadmium	(Cd) mg/	L	N.D.	0.002
Lead	(Pb) mg/		N.D	0.01
Mercury	(Hg) mg/		N.D	0.0005
Selenium	(Se) mg/		N.D	0.002
Arsenic	(As) mg/		N.D.	0.005
Chromium(VI)	mg/		N.D. lower limits of detects	0.05
5.2 Determination o	f formaldebyde e		lower limits of detect	юп.
		Aluminur	m-Recycled Wood	Lower Limits
Item	Un	it Compound Mat	erial (LOT : 120926)	of detection
Formaldehyde	emission mg/	and a second sec	N.D.	0.1
			lower limits of detect	ion.
6. Date of issue :	December 20	,2012		
			J. Run	
	Appro	ved signatory :	J. RUM	le
		by : Hiroshi Tado	koro	
	100464	General Manager		
		Tokyo Laboratory	,	
			ation and Research In: .no, Sugito-machi,Kita	
				manoa surra gui
		Saitama 345-0043	3, Japan	

Carbon footprint analysis


Product : **Soleo** (WPC-AL Hybrid)

1. Calculating $LCCO_2$ of Aluminum Hybrid Profiles

System boundaries and scenarios

In this analysis, figure 1 shows the system boundaries.

Fig. 1: System boundaries

2. Calculating LCCO₂ of the WPC Surface

SYSTEM BOUNDARIES AND SCENARIOS

In this analysis, we have adopted the evaluation scope proposed by Wada et all for the purpose of assessing how the use of recycled materials in Geolam production affects the LCCO2 value for Geolam. Figure 2 shows the system boundaries. In the case of recycled products, the process of generating raw production materials from original products that were themselves produced from raw materials is included within the system boundaries as a raw material procurement process.

Figure 2 : System boundaries

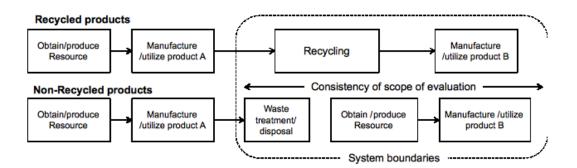
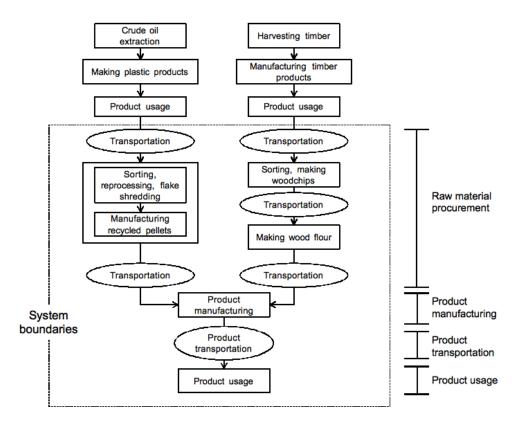



Figure 3 shows the WPC layer scenario discussed in this analysis.

Plastic materials are typically recycled from plastic containers and packaging as well as industrial waste. Wood flour from wood material is timber scrap derived from recycled construction scrap..

Product manufacturing processes consist of mixing the raw materials and sanding processed into the finished product. The ratio of plastic to wood material is an average based on figures supplied by the manufacturers we interviewed. Although Geolam products can take a variety of forms, our discussion here will be restricted to standard hollow panels. In terms of product usage, we assume that the panels are deployed in outdoor settings.

Our analysis does not include capital goods production (such as building factories and processing facilities) associated with the various processes.

CALCULATION CONDITIONS FOR INDIVIDUAL PROCESSES

This analysis employs bottom-up calculations using foreground data wherever possible. Where process data was unavailable, we have used what we consider to be representative data taken from previous reports and research papers.

Raw material procurement—plastic

From Figure 3, raw material procurement processes for plastics (in the form of recycled pellets) consist of transporting used plastic, sorting, reprocessing, flake shredding, manufacturing recycled pellets, and transporting recycled pellets.

Since all of the Geolam licensee purchase recycled plastic pellets through trading firms, we were unable to obtain foreground data on the sorting, reprocessing, and flake shredding process or the pellet manufacturing process. Instead, we calculated CO2 emissions for these processes based on data provided in past literature.

We used past literature to determine the criteria for calculating CO2 emissions associated with transportation of used plastic products. Based on the scenario of a 10-t truck2 loaded at 62%2 capacity and traveling a distance of 500 km2, unit CO2 emissions were calculated at 0.1300 kg-CO2/t-km2.3 and CO2 emissions per kilogram carried were 0.0650 kg-CO2/kg.

CO2 emissions from sorting, reprocessing and flake shredding were 0.0857 kg-CO2/kg. This figure is based on emissions for manual sorting and disassembly of waste plastic products as stated in past literature7. CO2 emissions from recycled pellet manufacturing were 0.0838 kg-CO2/kg, based on emissions figures for melting and extrusion in the literature7. Product yields were 98.5% for sorting, reprocessing and flake shredding and 99.7% for recycled pellet manufacturing, based on the same literature7.

Once again, CO2 emissions associated with transportation of recycled pellets were calculated on the basis of the criteria stated in past literature. For a 10-t truck2 loaded at 62%2 capacity and traveling a distance of 500 km2, unit CO2 emissions were 0.1300 kg-CO2/t-km2,3 and CO2 emissions per kilogram carried were 0.0650 kg-CO2/kg.

Raw material procurement—wood

From Figure 3, raw material procurement processes for wood (in the form of wood flour) consist of transporting timber scrap, sorting, making woodchips, transporting woodchips, manufacturing wood flour, and transporting wood flour. We used past literature to determine the criteria for calculating CO2 emissions associated with transportation of timber scrap. Based on the scenario of a 4-t truck5 loaded at 62%2 capacity and traveling a distance of 10 km5, unit CO2 emissions were calculated at 0.2178 kg-CO2/t-km2,3 and CO2 emissions per kilogram carried were 0.0022 kg-CO2/kg.

None of the Geolam licensee manufactures their woodchips in-house, so we were obliged to use background data from past literature5 in regards to sorting and woodchip making processes. Based on the energy consumption values for lumber sorting and crushing (typically using magnetic separators, air graders and/or metal detectors), we arrived at the consumption figures of 0.0233 kWh/kg (for electricity) and 0.00185 l/kg (for diesel). We then multiplied these by the respective emission coefficients set out in the Environment Ministry publication Calculation methodology and emission coefficients for calculation, reporting and publication purposes3 The resulting figure for CO2 emissions associated with sorting and woodchip manufacturing was 0.0179 kg-CO2/kg. Around 70% of woodchip output is considered suitable for Geolam material recycling, with the remaining about 30% used as fuel5.

Next, we calculated power consumption associated with production of wood flour at 0.9084 kWh per kilogram. This is an average figure based on the foreground data obtained from Geolam licensee who produce their own wood flour. Once again, we multiplied this figure by the corresponding CO2 emission coefficient in Calculation methodology and emission coefficients for calculation, reporting and publication purpose3 to calculate the CO2 emissions for wood flour production. The result was 0.5096 kg-CO2/kg. Product yield was 94.3%.

For CO_2 emissions associated with transportation, we used the scenario of a 10-t truck6 loaded at 62% capacity2 traveling a distance of 54.4 km6, based on past literature. The unit emissions value was 0.1300 kg- CO_2 /t-km2,3 while emissions per kilogram carried were 0.0071 kg- CO_2 /kg. These figures were applied to transportation of both woodchips and wood flour.

Production WPC layer

Power consumption associated with production WPC compound was found to be 1.8220 kWh per kg Geolam, based on the average of foreground data obtained from Geolam licensee. Multiplied by the CO_2 emissions coefficient for electric power6, this leads to an emissions figure of 1.0221 kg- CO_2 /kg. Product yield was 94.3%.

Product transportation

It was difficult to define the CO₂ emissions for the product transportation process because of the variety of different sales channels employed by Geolam licensee from whom we were able to obtain foreground data. For this reason, we used the transportation criteria given in past literature and assumed a scenario of a 10-t truck2 loaded at 62% capacity2 traveling a distance of 500 km2. On this basis, unit emissions were 0.1300 kg-CO₂/t-km2,3 and emissions per kilogram carried were 0.0650 kg-CO₂/kg.

Usage

We assumed that Geolam compound was used as the surface layer of Geolam Aluminum hybrid profiles in an outdoor louvers. Since Geolam does not require ongoing maintenance such as repainting, we assumed zero CO₂ emissions during the period of use.

RESULTS

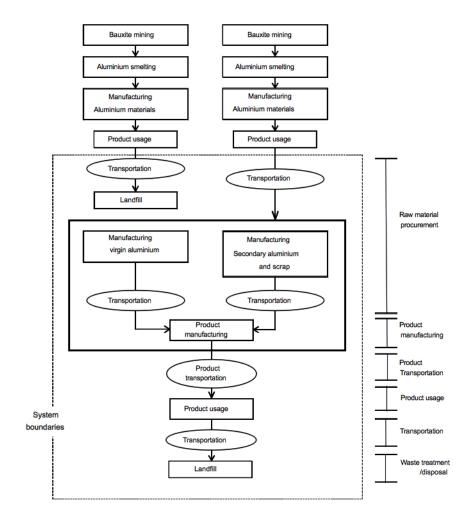
The LCCO₂ value for WPC layer was 1.54 kg-CO₂ per kilogram of WPC layer.

Table 1: LCCO₂ for WPRC per kilogram of product— calculation results.

	Average	Propor- tion of CO2 emissions		
WPC layer	Input material (plasti	cs)	0.515 kg	
Procurement of raw	Transportation of used plastics	CO2 emissions	0.033 kg-CO2	2.1%
plastic material	Sorting, reprocessing, flake shredding	CO2 emissions	0.044 kg-CO2	2.9%
	Manufacturing recycled pellets	CO2 emissions	0.042 kg-CO2	2.7%
	Transportation of recycled pellets	CO2 emissions	0.033 kg-CO2	2.1%
WPC layer	Input material (woods)	CO2 emissions	0.833 kg	
	Transportation of timber scrap	CO2 emissions	0.002 kg-CO2	0.1%
Procurement of raw wood material	Sorting, making woodchips	CO2 emissions	0.010 kg-CO2	0.6%
	Transportation of woodchips	CO2 emissions	0.004 kg-CO2	0.3%
ĺ	Making wood flour	CO2 emissions	0.283 kg-CO2	18.4%
	Transportation of wood flour	CO2 emissions	0.004 kg-CO2	0.3%
Process	Input material (plasti	cs)	0.506 kg	
Process	Input material (wood	s)	0.555 kg	
Process	WPC compound		1.000 kg	
Process	Yield		94%	
Process		CO2 emissions	1.022 kg-CO2	66.3%
Process	Transportation	CO2 emissions	0.065 kg-CO2	4.2%
Process	Product usage (20 years)	CO2 emissions	0.000 kg-CO2	0.0%
	Total	1.54 kg-	CO2 / kg	100%

3. LCCO, assessment of Aluminium

OVERVIEW


Previously we calculated the LCCO2 value per kg of WPC layer. In this Chapter, We begin by calculating the LCCO2 value per kg of aluminium decking.

CALCULATING LCCO₂ FOR ALUMINIUM System boundaries and anticipated scenarios

Figure 4 shows the anticipated scenarios and system boundaries. The scenarios involve manufacturing the aluminium materials from a combination of virgin and secondary aluminium as well as scrap. Based on past literature (reference 14), the breakdown was 51.7% virgin aluminium, 25.6% secondary aluminium, 17.2% scrap and 5.6% other metals such as added metals and alloys. In the virgin aluminium procurement process, in order to align the WPRC system boundaries and evaluation scope, we have added waste disposal and treatment (equivalent to the landfill process for aluminium production material in this section) of the same recycled materials used in the original product (see Figure 2).

For the usage process, we envisage flat boards used in an outdoor setting, the same as for WPRC, with the products being sent to landfill after use.

Figure 4 : Aluminium scenarios

Calculation conditions by process

We calculated LCCO2 values for aluminium materials based on background data from past literature. Among the scenarios in Figure 4, combined CO2 emissions associated with the processes enclosed within double lines, including some of the raw material procurement and product manufacturing processes, is taken from LCI Data for Rolled Aluminum Products14) from the Japan Aluminium Association (JAA). Emissions per kg of aluminium materials associated with the processes enclosed in double lines was 7.11 kg-CO2.

Calculation conditions for other processes are described below.

Raw materials procurement processes

Among the raw material procurement processes, the transportation process (as far as the landfill facility) and landfill process generated 0.0016 kg-CO2 per kg, based on past literature (7).

The conditions for calculating CO2 associated with the transportation process (as far as the secondary aluminium manufacturing facility) was taken from past literature.

Transportation by 10-ton truck5) over a distance of 500 km5) at 62%5) loading generated 0.1300 kg-CO2 per ton per km5)6) resulting in CO2 emissions of 0.0650 kg-CO2/kg.

Product transportation process

We plotted the anticipated WPRC transportation route and determined the conditions from past literature. Transportation by 10-ton truck5) over a distance of 500 km5) at 62%5) loading generated 0.1300 kg-CO2 per ton per km5)6) resulting in CO2 emissions of 0.0650 kg-CO2/kg.

Product usage process

As with WPRC, the usage process assumed flat boards used as outdoor construction materials. It was assumed that no CO2 was emitted during the usage period.

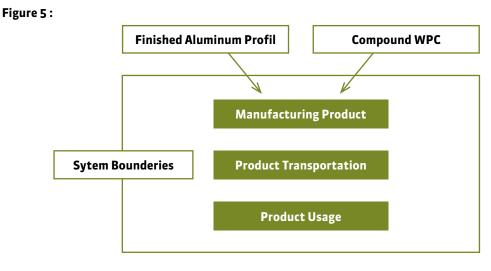
Waste treatment/disposal process

The waste treatment/disposal process consists of transportation to the landfill site and disposal in landfill, as shown in Figure 4.

CO2 emissions associated with transportation to the landfill site were 0.0016 kg-CO2/kg, based on past literature (7).

3.2 RESULTS

Table 2 shows the calculation results. The LCCO2 value for aluminium materials was 7.19 kg-CO2 per kg.


	Process	Quoted value	Proportion of CO2 emissions	
Raw material	Transportation (to secondary aluminium manufacturing facility)	CO2 emissions	0.017 Kg-CO2	0.2%
procurement (up to landfill)	Transportation (to landfill)	CO2 emissions 0.001 Kg-CO2		0.0%
-	Landfill	CO2 emissions	-	0.0%
Raw material procurement (from raw material manufac- turing to product manufacturing)		CO2 emissions	7.11 Kg-CO2	98.8%
Product transpor- tation	Transportation	CO2 emissions	0.065 Kg-CO2	0.9%
Product usage	Product usage (20 years)	CO2 emissions	0.000 Kg-CO2	0.0%
Waste treatment/	Transportation	CO2 emissions	0.002 Kg (0.2	0.0%
disposal	Incineration	CO2 emissions	0.002 Kg-CO2	0.0%
		Total	7.19 Kg-CO2/kg	100%

4 Calculating LCCO2 of Aluminum Hybrid Profiles

SYSTEM BOUNDARIES AND SCENARIOS

Figure 5 shows the Geolam Aluminum Hybrid profile scenario discussed in this analysis.

WPC surface materials are calculated in section2 and Aluminum profile is calculated in section 3.

Geolam aluminum hybrid profile, the material is composed of WPC on the surface, a special glue in the middle to increase the interface compatibity and Aluminum in the core. The ratio of WPC surface layer to Aluminum profile is an average based on figures supplied by the manufacturers we interviewed. Although Geolam Aluminum hybrid profiles can take a variety of forms, our discussion here will be restricted to standard hollow panels EW6008.

CALCULATION CONDITIONS FOR INDIVIDUAL PROCESSES

This analysis employs bottom-up calculations using foreground data wherever possible. Where process data was unavailable, we have used what we consider to be representative data taken from previous reports and research papers.

Raw material procurement—WPC surface and Aluminum profile

For raw material that are the same as the WPC layer scenario in Figure 2, we used the calculation results from Section 2 Calculating LCCO2 of WPC layer and from Section 3 Calculating LCCO2 of Aluminum profile.

Production Geolam Aluminum Hybrid profile

Power consumption associated with production WPC layer obtained from Geolam licensee multiplied by the CO2 emissions coefficient for electric power, this leads to an emissions figure of 0.21CO2/kg.

Product transportation

It was difficult to define the CO2 emissions for the product transportation process because of the variety of different sales channels employed by Geolam licensee from whom we were able to obtain foreground data. For this reason, we used the transportation criteria given in past literature and assumed a scenario of a 10-t truck2 loaded at 62% capacity2 traveling a distance of 500 km2. On this basis, unit emissions were 0.1300 kg-CO2/t-km2,3 and emissions per kilogram carried were 0.0650 kg-CO2/kg.

Usage

We assumed that Geolam Aluminum hybrid profile was used as outdoor louvers. Since Geolam does not require ongoing maintenance such as repainting, we assumed zero CO2 emissions during the period of use.

RESULTS

The LCCO2 value was 9.005kg-CO2 per kilogram of Geolam. (EW6008)

Table 3: LCCO2 for WPRC per kilogram of product— calculation results

Process	Average	Proportion of CO2 emissions			
WPC layer Procurement of WPC layer	**Table 1 CO2 emissions		1.54 kg-CO2	17.1%	
Aluminum profile Procurement of Aluminum profile	**Table 2	CO2 emissions	7.19 kg-CO2	79.8%	
Raw material procurement (from raw	Input material (WPC)		0.178 kg		
material manufacturing to product manufacturing)	Input mater	ial (Aluminum)	0.822 kg		
Product transportation	Geolam Aluminum Hybrid profile		1.000 kg		
		CO2 emissions	0.21 kg-CO2	2.3%	
Product transportation	Transporta- tion	CO2 emissions	0.065 kg-CO2	0.0%a 0.7%	
Product usage	Product usage (20 years)	CO2 emissions	0.000 kg-CO2	0.0%	
	-	Total	9.005 kg-CO2 / kg	100%	

5 Conclusions

The following conclusions were drawn from our analysis. The LCCO2 for Geolam aluminum hybrid profile was 9.005 kg-CO2/kg.

6 References

- Yasuhiko Wada, Hiroyuki Miura, and Akiyasu Hirata: Study of recycling phase evaluation methodologies in Life Cycle Assessment, Environmental Systems Research, Vol. 22, pp. 141-146, 1994
- 2. Secretariat of the CFP Trial Project (Mizuho Information and Research Institute): Product Category Rules (PCR) (accredited PCR number = PA-BG-01)—Plastic flat palette for cargo and transportation, http://www.cfp-japan.jp/ common/pdf_authorize/000035/12696087511.pdf, July 30, 2010 (reference)
- 3. Ministry of the Environment: Calculation methodology and emission coefficients for calculation, reporting and publication purposes, http://www.env. go.jp/earth/ghg-santeikohyo/material/itiran.pdf, July 30 2010 (reference)
- 4. Plastic Waste Management Institute, Technical Devel-

opment Committee, Environmental Impact Assessment WG: Recycling LCA of copiers, vehicle bumpers and ATMs, Plastic Waste Management Institute, March 2006

- **5.** Seiji Hashimoto, Takaumi Ohara, and Yasushi Terashima: Environmental evaluation of recycling of timber scrap, Collections of the Japan Society of Civil Engineers, No. 643/VII-14, pp. 37-48, February 2000
- **6.** Takuya Shimase: Domestic transportation distances for woodchips, Abstracts from the Autumn 2006 conference of the Japanese Forest Economic Society, November 2006
- 7. Plastic Waste Management Institute: LCI data study on petrochemical products, Plastic Waste Management Institute, July 1999
- 8. Wood miles forum http://woodmiles.net/english/index.htm

Methods Used for Durability Tests

Product : Soleo (WPC-AL Hybrid)

- 1. The mechanical property of WPC-AL Hybrid products is investigated using the Japan Industrial Standard (JIS) test methods, methods of analysis and inspection aproach.
- 2. Since there are variety of testing methods to comply with a variety applications and usage environment the testing method shall be chosen according to client technical needs.
- 3. We are commited to continuously review and improve testing methods in order to increase product quality.

Test method	Test Item	Purpose	Test method	Criteria	Test logic/reason for selecting test method
jis	Sunshine weather meter test	Check the accel- erated weather resistance.	5000 hours JIS K5400		1000Hr is generally considered equal to two years for outdoor usage. Test Machine: 300 Sunshine Weather Meter WEL300 / Suga Test Instruments Co.,Ltd
	Cold-Hot repeat test	Check the peeling off of the WPC layer from the AL surface due to expansion and contraction	2 hours at -10C and 2 hours at 80C, 50 cycles		Under Japanese weather condition, the expected minimum surface temperature of material is minus 10C. The expected maximum surface temperature of material (dark color) is 80C. Test Machine : INCUBATOR / Sanyo The expected duration to stabilize the material from expansion/contraction is two hours. The expected duration per cycle is 0.2 years thus 50 cycles is estimated equal to 10 years.
Test	Hot water and dry environ-	Check the peeling off of the WPC layer from the AL surface due to expansion/	Heavy condition : 5 days in 60C hot water/2days dry at 80C, 15 cycles	Free from cracking or	Under Japanese weather conditions, the expected maximum water temperature is 60C. The expected maximum surface temperature of the material (dark color) is 80C. The expected duration to dry and wet condition is 2days (48Hrs)
methodes- tablished by our technicians	lished ment and change in pur humidity	and change in	Light condition 5 hours in 60C hot water / 2hrs dry at 80C, 15 cycles	peeling of the surface layer by resin	The peel off phenomenon will occur after 7-10 cycles, thus we specified to test 15 cycles.
based on Client needs	Constant tempera- ture and humidity	Check the peeling off of the WPC layer from the AL surface due to constant high temperature and high humidity	70C 95% humidi- ty, 30 days duration		General testing standard for outdoor decoration material. Test Machine :PR-2KP /ESPEC Corp.
	Water Absorp- tion	Check the peeling off of the WPC layer from the AL surface due to water absorption	Immersion for 30 days at a normal (20C) tempera- ture condition		General testing standard for outdoor decoration material. The peel off phenomenon will occur at 20days, thus we specified to test 30 days.
	Hot Water resist- ance	Check the peeling off of the WPC layer from the AL surface due to hot water absorption	Immersion for 14 days at a hot (80C) tempera- ture condition		General testing standard for outdoor decoration material. The peel off phenomenon will occur at 7days, thus we specified to test 14 days. As the plastic material starts to soften over 80C, we specified the testing temperature at 80C.
	SUV	Check acceleratied weather resistance	500 hours		SUV is a rapid test to check color fading as well as surface deterioration. However, the correlation between laboratory testing and actual tests shows that SWOM is more reliable than SUV. Test Machine: SUV-W151 EYE Super UV tester, IWASAKI ELECTRIC CO., LTD. 100Hr is generally considered equal to two years of outdoor usage.

Material Safety Data Sheet

Product : **Soleo** (WPC-AL Hybrid)

Material characteristics

Compound :

Metal-resin composite

Chemical composition :

Surface layer: Polypropylene resin extrusion Polypropylene resin: 60% - 70% Wood flour: 15% - 25% Pigments/additives: 5% - 25% Adhesive layer: Ethylene copolymer resin Core: Aluminum alloy

UN classification :

n/a

Hazard/toxicity classification :

No classification

First Aid Measures

Eye contact:

Can cause injury to eyeball. Wash gently in plenty of clean running water. Do not rub. If foreign matter remains in the eye, seek advice from a specialist.

Skin contact:

For dust, remove by washing with soap and water. For hot melt, douse clothing in cold water to cool, then remove affected garments and seek medical advice.

Inhalation:

For significant quantities of dust, seek medical advice. For significant quantities of molten resin gas, relocate to a fresh air environment.

Ingestion:

For small quantities, induce vomiting where practicable. If patient still feels unwell, seek medical advice.

Fire Fighting Measures

Warnings:

Wear fireproof clothing and respiratory equipment. Beware of intense heat, thick black smoke, carbon dioxide, carbon monoxide and nitrogen oxide gas.

Extinguishing media:

Water/water spray, powder, foam or carbonic acid gas.

Accidental Release Measures

- Sweep up and dispose of dust generated during cutting and finishing work.
- Dust can be highly slippery under foot. Ensure floors are properly cleaned and maintained.
- Collect and remove all surface spills, particularly in drainage system.

Handling and Storage

Handling

Although the product does not ignite at normal temperature, it should be stored properly and kept away from sources of flame in the workplace.

Do not store resin in powder form as it can potentially explode.Product is flammable. Keep well away from ignition sources during use.

Product has an aluminum alloy core which may be exposed at the ends. Wear protective gloves and handle with care.

Storage

Product is a designated flammable material and as such is subject to special provisions on storage and handling. Store well away from sources of flame.

Exposure Controls

Concentration in workplace environment:

n/a

Allowable concentration:

n/a

Ventilation:

Ventilation equipment should be installed where processing heat generates low molecular weight substances.

Protective gear:

Dust masks and safety goggles should be worn where dust is given off.

Physical and Chemical Properties

Melting point: Data not available Volatility: n/a Solubility: Not soluble in water

Hazard Information

Flammability:

Flammable

Ignition point:

Data not available

Oxidizability:

Data not available

Dust explosion properties:

Explosive

NB: Aluminum dust can be explosive. Beware dust from aluminum core during cutting and working.

Stability/reactivity:

Stable and nonreactive under normal storage conditions.

Toxicological Information

Skin causticity:

None

Skin/eye irritant:

Data not available (NB: May act as physical stimulant) Subacute toxicity Data not available

Chronic toxicity:

Data not available

Carcinogenicity:

Data not available

Disposal Considerations

- The product is a compound of aluminum alloy and synthetic resin and should be disposed of as a flammable substance in accordance with applicable laws and regulations and the relevant handling provisions.
- Should be disposed by incineration, landfill or entrusted to an industrial waste disposal contractor. Dispose of product in accordance with the requirements of the Waste Management and Public Cleansing Law.
- **3.** Incineration can generate black smoke and/or toxic fumes with potential environmental consequences.

Transport Information

- **1.** Exercise due care during transportation to prevent damage.
- 2. Product should be treated as flammable and subject to the handling and storage provisions detailed above.

Applicable Legislation

Fire Service Act:

- Designated flammable substances—synthetic resin, 3000 kg
- Law Concerning Pollutant Release and Transfer (PRTR Law): n/a
- Industrial Safety and Health Act: n/a
- Waste Management and Public Cleansing Act

Other Information

The information presented in this MSDS is based on currently available data. This MSDS does not in any way constitute a warranty or guarantee in relation to any of the physical and chemical properties of the product nor its hazard and toxicity characteristics.

The advice and warnings provided in this MSDS are predicated on standard usage and handling procedures. Additional safety measures may be required for non-standard usage or handling of the product.

Product Delivery Specifications

Product : **Soleo** (WPC-AL Hybrid)

Base Materials

Part	Material		
	Aluminum Type	A6063S, as per JIS H4100	
	Surface finish	AA10 equivalent, as per JIS H8601	
Core	Tensile strength	150 N/mm2 or better	
	Load bearing capacity	110 N/mm2 or better	
	Elongation	8% or better	
onding layer	Olefin resin		
face layer	Regenerated wood flour resin containing PP-based non-halogenated flame retardant		

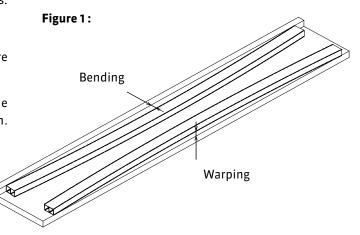
Product Specifications

Category	Requirement		
Sectional dimensions	See data sheets		
Length dimensions	As per JIS B0405 lower grade (e.g. ±4 mm at up to 4000 L)		
Warp/bend	Within L/800 (e.g. within 5 mm for product length of 4,000 mm)		
Color	Consistent with color sample		
Dirt, scratches, dents, contamination	Not visible when viewed from a distance of two meters		
Sanding finish	Consistent with standard sample		
Adhesion	Surface layer bonds with aluminum with no evidence of peeling		
Combustibility	CSTB combustion test		

Note: Initial values shown

Product Inspection

Inspection item	Procedure	Frequency	Equipment
Sectional dimensions	Measured in-process	Every 50 articles	Calipers
Length dimension			Convex
Warp/bend	Measured in-process as per Figure 1	Every 50 articles	Special tool
Color	Compared to standard sample (in-process)	100%	Visual inspection
Dirt, scratches, dents, contamination	Not visible when viewed from a distance of two meters (in-process)	100%	Visual inspection
Sanding finish	Compared to standard sample (in-process)	100%	Visual inspection
	Visual inspection (in-process)	100%	Visual inspection
Initial adhesion	Immerse 50-mm test piece in water at 80° C for 24 hours, then check for surface layer peeling from aluminum base	Daily	Visual inspection
	Peeling off test type JIS-K-a5600-5-6	8 hours	
Bending strength	Measure maximum stress in 800-mm span subject to loading at test speed of 20 mm/min	Once per lot*	Autograph


* Refers to lot of aluminum core. (Once per aluminum core lot, n = 3).

Perform the inspections listed above, record the results on the prescribed inspection record form and retain records.

Inspection records must be produced upon request.

Place the product against the measuring jig and measure the gap in the center section.

Warp is defined as vertical defection relative to the extrusion direction; bending is transverse deflection. The diagram illustrates bending measurement.

Durability Evaluation Results

Test	Type/ standard	Method	Criteria	Bend Flame-re	
Immersion	-	Immersed in water at room temperature Continuously accelerated for 30 days		No Pe	eel off
Heating and cooling		50 cycles of -10°C to 80°C every two hours x 50 cycles accelerated		No Pe	el off
Hot water immersion and drying		Immersed in water heated to 60°C for five hours followed by drying at 80°C for two hours x 15 cycles accelerated (lighter conditions)	Zero	No Pe	el off
	in-house tests	Immersed in water heated to 60°C for five days followed by drying at 80°C for two days x 15 cycles accelerated	evidence of surface peeling away from aluminum	No Pe	el off
Normal temperature and humidity		Subjected to 70°C, 95% humidity environment continuously accelerated for 30 days	core	No P	Peel off
Hot water immersion		Immersed in water heated to 80°C continuously accelerated for 14 days		No F	eel off
Boiling water immersion			Immersed in water heated to 98°C continuously accelerated for 14 days		No F
		500 hours		DE	5.42
Weathering SUV accelerated	_			DL	5.25
		Joo nours	-	Da	1.28
				Db	-0.36
Weathering				DE	2.1
SWOM	JIS A 1415	5000 hours		DL	1.4
accelerated				Da	0.1

Note: The above figures are test results and should not be construed as guarantees of performance.

Lots

Definition

A lot is the collective term for all products processed on a given day.

Labeling

The date of processing is shown on the outside of the package. The display format is as per the Packaging Specifications.

2013 12 24 Year Month Date

Packaging and Stacking for Transport

As per the Packaging Specifications.

Usage and Handling

Storage

- Store indoors on a level surface. Do not lean the product at an angle.
- Use spacers to compensate for any irregularities.
- Spacers should all be the same height and no further apart than one meter.
- To prevent deflection, do not store product that is bent.

Transportation

• Handle the product with due care during transportation.

Product Characteristics

Usage

- The product is an external louver. It is not intended as a structural or load-bearing element.
- The product must be designed and manufactured to the appropriate safety standards including resistance to wind pressure. (These specifications apply to the use of the material as a louver and do not extend to issues arising from the manner of installation.)

- If storing outdoors, cover with sheeting to protect from rain and other water sources.
- Ensure that any load from heavy objects on the product is evenly dispersed.
- Note that excessive load may lead to deformation or damage.
- Keep well clear of naked flame and other heat sources to prevent possible deformation or discoloration.
- Rough treatment may lead to damage.

Color

- The product is made of reconstituted wood flour resin, which is subject to potential fading and discoloration as well as other forms of deformation and degradation. Product color may vary between batches at the time of delivery. The rate of fading and discoloration over time may also vary between batches.
- The product is sanded during manufacture to produce an authentic wood feel. The sanding process produces a directional grain. Thus, the appearance and color of the product may differ depending on the angle of viewing and the direction of the incident light.

Elongation

- The rate of elongation/contraction differs slightly between the aluminum core and the surface layer.
- Cut ends should be covered with a cap or equivalent so that they are not visible. Diagram (NB: Deformation has been exaggerated for the purpose of illustration)

Surface Coatings

• The surface layer contains PP and is unsuitable for most commercially available surface coatings.

Drainage

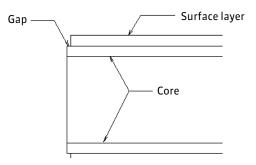
 The product should be installed at a sufficient angle to ensure good drainage and prevent water from pooling on the surface or internally. It may be necessary to provide additional drainage structures or mechanisms.

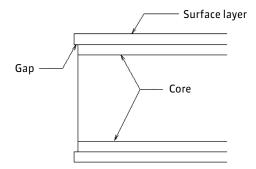
Maintenance

Recommended maintenance procedures are outlined below.

Exterior dirt

- Dirt and contamination on the surface of the product should be wiped off with a cloth.
- For stubborn dirt, scrub with a deck brush or equivalent with plenty of water.
- If a cleaning agent is required, use a mild, neutral detergent that does not contain acid or ammonia.


Modifications


These documents may be modified or amended only with the approval of the purchaser or end user (which may be a subcontractor).

Complaints and Grievances

Complaint Handling Procedure

Note: Contact details may change or procedures may be omitted depending on the nature of the claim.

Scratches and cigarette burns

- Use sandpaper to remove any scratches or cigarette burns on the surface of the product.
- For best results, rub the sandpaper in the longitudinal rather than transverse direction.
- Avoid excessive sanding, which could remove the surface resin and expose the aluminum core material.

GEOLAM AG Dufourstrasse 55, 8702 Zollikon Switzerland T +41 (0)55 511 07 00 service@geolam.com

120 | GEOLAM HANDLING BOOK

11

www.geolam.com